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ABSTRACT

\%

This interim technical report contains a tropospheric
system prediction model which can be used to pred@ict median
path loss, aperture to medium coupling loss, and 20 multipath
spread. The prediction model is used to determine design para-
meters for an angle diversity system. For a dual vertical
angle diversity system the optimum beam separation is approxi-
mately 1 beamwidth and the antenna take-off angle relative to
the horizon is approximately 1/2 beamwidth for C-band systems
and 1/4 beamwidth for L-band systems. An analysis of long
term variability and the decorrelation advantage of angle
diversity is presented along with preliminary results. The
prediction model is used to compare 3 specific troposcatter
system examples with the result that dual space/dual angle
diversity is superior in system performance over conventional
dual space/dual frequency diversity. The dependeace of
aperture-to-medium coupling loss on carrier frequency is also
investigated. The turbulent scatter theory used in the model
analysis suggests that conversion of L-band systems to S-band
would result in significant system improvement. Further study
of available empirical data is required to validate this result.
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SECTION 1

INTRODUCTION

This report is the second interim technical report under the
Adaptive Antenna Control program,Contract No.DAABO7-76-8-85. The
Adaptive Antenna Control (AAC) program is under the contract manage-
ment of the Project Manager for DCS (Army) Gommunications Systems,
Ft.Monmouth,New Jersey. ECOM,Ft.Monmouth,N.J. is responsible for
technical direction of the program. SIGNATRON,Inc.of Lexington,
Massachusetts with RF Systems, Inc. of Cohassett as a major sub-
contractor have the responsibility for executing the program

tasks.

The AAC program encompasses the investigation of adaptive
antenna control techniques to enhance communication on strategic
trans-horizon radio paths. For paths dominated by diffraction
effects with a small or non existent scatter component, the
emphasis is on antenna steering techniques to mitigate beam
blockage due to changes in the refractive index gradient. Anal-
ysis of the diffraction problem has been included in the first
Interim Technical Report [1.1] and a design of a mechanically
steered feedhorn with electronic adaptation was presented in the
AAC Design Plan [1.2]. The implementation and field test of
this system is not part of the existing contract.

For trans-horizon paths dominated by forward scatter recep-
tion of communication signals, the failure to successfully il-
luminate the useful scattering volume results in an aperture to
medium coupling loss and neglects an important diversity capabil-

ity associated with signal angle arrivals from different portions
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of the scattering volume. This program includes a comprehensive
modeling of this phenomenon, development of a prediction model,
analysis of angle diversity capability, design and development
of a combiner system for augmentation to 8th order diversity
using angle of arrival signals, design and development of a dual
vertical feedhorn modification for the C-band RADC test system,
and an extensive angle diversity test program to be accomplished
on the RADC Youngstown-Verona TRC-132 test link in the fall and
winter of 1977. The first Interim Technical Report [1.1] de-
veloped much of the theoretical basis for the troposcatter model
and the prediction technique. The Design Plan [1.2] contains
details of the combiner and feedhorn systems, and the Test Plan

[1.3] describes the factory and field tests in detail.

This report continues with the theoretical development of
the troposcatter model and prediction technique. Section 2 re-
views other approaches to troposcatter modeling and develops the
basis for predicting median path loss, 20 multipath spread,
aperture to medium coupling loss, and signal correlation distances
at the receiver antenna. Angle diversity systems are considered
in Section 3 where the methods of Section 2 are used to derive
system design parameters. The variation of hourly median sig-
nals is also treated in Section 3 and the approach for determin-
ing system availability is outlined. The performance of angle
diversity systems with digital signaling is treated in Section 4.
A method of computing the average bit error probability for a
troposcatter adaptive equalizer in the presence of both implicit
and angle diversity is derived for the first time. This method
is used in Section 4.2 to compute system performance for some

example links.




Some of the major accomplishments and findings developed in

this study are

® aperture to medium coupling loss is best considered an
integral part of the path loss rather than a separable
entity to be calculated by itself,

° a numerical integration technique derived from turbulent
scattering theory has been developed to compute the path
loss including aperture to medium coupling loss effects,

° an accurate closed form approximation of the above
integration technigue has been developed for the wide-
beam path loss,

e a closed form relationship for aperture to medium coupl-
ing loss has been developed. The widebeam path loss
and aperature to medium coupling loss equations when
used together show good agreement with the numerical
integration path loss result,

® vertical angle diversity is superior to horizontal angle
diversity for typical narrow beamwidth strategic tropo-
scatter systems,

: ® the optimum squint angle of a duplex dual vertical angle
] : diversity system is approximately one beamwidth. The
] optimum boresight/horizon anale is about 1/4 beamwidth

: for L-band systems and 1/2 beamwidth for C-band sys-
tems.

® there is a long term advantage for angle diversity over
space diversity due to the decorrelation of the scat-
tering volumes in the former. This advantage is reduced
by the greater variance of signal strength from the
elevated beam. Empirical data from a Bell laboratories
study (1.4] indicate that the two effects tend to cancel
each other out,

° a method requiring the calculation of a determinant has
i . been developed for the computation of average bit error
‘ probability of a troposcatter equalizer in an angle
diversity system with multipath dispersion,

® on a system comparison basis, dual space/dual frequency
(258/2F) is generally inferior to dual space/dual angle
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(25/2A). The superiority of 2S/2A results chiefly from
the 3 4B advantage of the second power amplifier exceed-
ing half the squint loss in dB of the elevated beam. The
implication is that the number of frequencies required
for the strategic troposcatter plant could be halved

and overall system performance would be improved,

° the preliminary results on aperture to medium coupling
loss as a function of frequency suggest that system
improvement may result if I-band systems are converted

The major portion of the remaining study effort will con-

centrate on validating the median path loss predictions in
order to provide an accurate absolute median path loss measure
and to verify the coupling loss dependence with frequency. The
results of the field tests will also provide an important em-
pirical guide for path loss prediction and for evaluating the

long term decorrelation advantage of vertical angle diversity. i

AW e at
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SECTION 2

TROPOSCATTER PERFORMANCE PREDICTION

2.1 Introduction

In this section we shall describe in detail the background,
theoretical as well as historical, for the development of the
SIGNATRON troposcatter software package. This discussionwill include
a theoretical development of the propagation model,analytical per-
formance prediction, and some numerical results. A comparison

with the results of other authors will also be presented.

Theory and practical techniques for troposcatter communica-
tion started developing around 1950. [Booker and Gordon, 1950.])
Two main theories have been proposed, the layer reflection theory
(Friis, et. al., 1957]) and the turbulent scattering theory.

The turbulent scattering theory is based on the theory of tur-
bulence structure developed in 1941 by Kolmogorov and Obukhov.
The most complete treatment may be found in Tatarski [1971]. The
layer reflection theory received the most attention in the beginning,
partly because it predicted the observed linear dependence of the
scattering crossectionwith wavelength. This theory also predicts a
dependence on the scattering angle of the form 9-5. In later
years ,experiments at higher frequencies, and hence narrower
antenna beams, have confirmed the validity of the turbulence
theory, with a scattering angle dependence of the form 9-11/ 3
and a wavelength dependence for the scattering crossection of
the form x-l/ 3., 1n practice both phenomena can exist simul-
tanecusly with layer reflection being more frequent when wide-
beam antennas and/or low frequencies are used. Experimental
results (Eklund and Wickerts, 19687 indicate that the wavelength
dependence can vary between )‘-1 to x3 . The scattering angle

dependence has been measured to lie in the range of 9-2 to 9-6.
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The exponent in the scattering ancle is called the refractive

index spectrum slope since it also indicates the fall-off of the
wave number spectrum of the refractive index, provided the wave-
length is in the so-called inertial subrange [Tatarski, 1971,p521.

A third theory that has been proposed is the normal mode
theory [Carroll and Ring, 19557. This technique consists of
considering the atmosphere as a waveguide propagating infinitely
many modes of the electromagnetic field. Except for diffraction

path analysis this method is generally not practical to use.

A number of theoretical and computational models have devel-
oped [Rice, et al, 1967; Hartman and Wilkerson, 1959; Booker and
Gordon, 1950; Tatarski, 1971: Yeh, 1960]. Further references and
a discussion of these models can be found in Larsen (1968) or
Panter (1972). Most of these models have been constructed to
agree with empirical measurements of a few selected parameters,
parttularly the received signal level and its daily or seasonal
variations. As a result the majority of the models are not
suitable for prediction of a number of other parameters of interest,

such as

e coupling loss,

® delay spread,

® receiver correlation distances.
¢ fade rate,

® angle diversity correlation,

® the dependence on distance,
elevation angles,

frequency , and

standard atmospheric parameters.
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The SIGNATRON troposcatter computer program is general in scope
and can handle most of the parameter of interest without making
unreasonable assumptions about the antenna gain patterns. This
greater generality also means that_the path has to be specified
in a way more consistent with the underlying physics than has
typically been done in the past. The ensuing discussion will
therefore center on establishing a firm basis for describing
the troposcatter model and its associated performance. This in-
cludes separate treatments of the

. properties of the troposphere

L path geometry and antenna patterns

° analytical evaluation of the model

° assessment of the effects of the approximations made
. comparison withwanalytical and empirigg}_;esg;ts.

The majority of the discussion will be directed to

b small to medium distance péth

L microwave frequencies (300 MHz to 20 GHz)

. horizontally stratified atmosphere.
Correction terms for long distance paths are included. Most of
the results apply to higher frequencies than listed above, but
multiple scattering and large atmospheric absorption will limit
the direct application of the model at higher frequencies.

2.2 The Troposphere for Beyond-the-Horizon Propagation

At the frequencies of interest the tropospheric radio pro-
pagation is well described by the theory of geometrical optics.
We shall thus primarily use the ray-propagation technique and
will ignore those almost line-of-sight paths where diffraction

is the main mode of communication.




This section is intended partly as a reference for the sub-
sequent sections and partly as an introduction to some of the
h theories of atmospheric structure employed in tropospheric scatter
performance prediction. The topics to be discussed in this sec-
tion are the standard atmosphere and refractive index variations
in Section 2.2.1, 1layer reflection in Section 2.2.2, refractive
index fluctuations in Section 2.2.3 and turbulent scatter in
Section 2.2.4.

2.2.1 The Standard Atmosphere

Radio meteorological measurements normally yield pressure,
temperature and water vapor content of the atmosphere. From
such measurements the refractive index n, or the refractivity
N= (n-1) ° 106, can be determined from an empirical formula.
The relation most commonly used is FSmith and Weintraub, 1953],

N = (n-1) 10° ,2_7'1:_6 (b + 4810 + 2), (2.1)

p = total pressure in millibars

e = water vapor pressure in millibars

T = temperature in Kelvin degrees.

This formula is designed to be valid in the temperature range
-50° c to + 409 C with an error less than .5% in N up to 30 GHz. |
An improved equation has been suggested by Thayer (1974) but for :
most radio application Eg. (2.1) is sufficiently accurate.
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Measurements of the refractivity as a function of height
above the surface of the earth results in a typical profile, as
shown in Fig. 2.1. The refractivity at the surface is of the
order of 300, and a nearly linear decrease with height is normally
found in the first two or three kilometers. 1In the standard
atmosphere the slope is 40 N-units/km. This line is also shown
in Fig. 2.1.

The nearly linear decrease with heights at low altitudes makes
it convenient to introduce an "effective earth radius" to account
for the ray bending. We have shown previously [Monsen et al, 1976)

that modeling the refractive index in the form

Y
%] . oxh<c2wm

n(RO *h) = n(RO) [ Ro+

leads to the exact relationship

Ro
Re = l-vy

In these equations Ro = 6368 km is the actual earth radius, h

is height above the surface and y is a parameter determining the
slope of the refractivity profile. Re defines an equivalent earth
radius in a transformed coordinate system with preserved distance
measure on the surface and with straight line propagation in the
atmosphere. For the standard atmosphere y is

y [standard atmosphere] = 0.255,

corresponding to the earth radius factor K given by

R
K= Eg'~ % for the standard atmosphere.
o

2=-5




Fig. 2 .1 Typical Refractivity Profile
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CCIR even defines a standard refractivity profile of the form

N = 289 ¢ 0-136 P,

In this form N(h) is close to the observed profile,but for most
troposcatter applications it is adequate to use the linear

approximation valid near the surface. The height of the common
volume on a troposcatter path of length d where the antennas are

aimed at the horizon is

~ 2 km if d = 370 km (230 mi)

and K = 4/3.

For longer paths an equivalent value of K may be found so that the
scattering angle is correct. The small altitude errors introduced

by this approach can be compensated for in the final analysis.

During conditions of super refraction it can sometimes be pos-
sible to have a direct path between transmitter and receiver on a
path where troposcatter would normally be the only mode of communi-
cation. This can occur when the gradient of refractivity is
steeper than -157 N-units/km. In general, variations of surface
refractivity and gradient are functions of time-of-year and geo-
graphical location. Data have been accummulated over many years
to allow a reasonable prediction of these parameters.

2.2.2 Reflection from Atmospheric Layers

The predominantly horizontal stratification of the atmosphere
often contains local steep gradients in the transition from one
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value of N to another. For electromagnetic waves with a wavelength
large compared to the width of the layer boundary such high

gradient regions look like an abrupt transition and can cause a
substantial reflection of energy. At higher freguencies the
transition appears more gradual and little or no energy is reflected.
At intermediate frequencies layer reflection and turbulent scattering
can exist simultaneously, greatly complicating the analysis of
troposcatter links. In this section we briefly summarize some

results relating to layer reflection or "feuillet" scattering.

Layer reflection and scattering were analyzed by Friis, Crawford
and Hogg (1957). The effective scattering crosséction was found
for severzl types of layer structures. The dependence of the
crossection ag, on wavelength )\ and scattering angle g, is listed
below (from Rice, et.al., 1967):

Large lLayers: as° Yl (2.2)
Intermediate Layers: a > xl 9-4 (2.3)
Small Layers: a = 20 o4 (2.4)

This may be compared with the mathematical formula listed below,
based on empirical results from radio data [Norton, 1960; Rice
et al, 1967],

s = > ¢ (2.5)

where °n2 is the variance of the refractive index and Lo is the
outer scale of turbulence (see Section 2.2.3 for further details).

This formula is close to the behavior expected from intermediate
size layers. More recent high frequency data (>1GHz) indicate a some-
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what different form of ag, closer to that predicted by the

Kolmogorov-0Obukhov turbulence theory described in the next section.

2,2.3 Refractive Index Fluctuations
2.2.3.1 The Covariance Function

Superimposed on the average refractive indéx variations dis-
cussed in Section 2.2.1 is a small, rapidly fluctuating term,
attributed to turbulence. Let n(x) be the refractive index at a
point r, and with

n(r) =n_(z) +n, (1)

where “0(5) = E {n(x)} and n, () is the small,

fluctuating component,

n(x) can be considered as a random field. The covariance function

Qn (E' _J:'_') is
?, (. £') = E {n (2) n, (&) .

1f o is a function only of r - g'r then the random field of n(x)

is said to be homogeneous, and the covariance function is written
as Qn(£ -x'). 1If, in addition, 9, is only a function of |x - ',
then the random field is said to be isotropic (in addition to
homogeneous). The wavenumber spectrum of a homogeneous field is
defined as the Pourier transform of the covariance function,

1l iker 3
’n(-ls) = 'n(kl' k2' k3) = (211)3 .”.[ cpn(_l;) e ==d¢r

2.2.3.2 The Structure Function

The structure function D_ (z, r') is defined by

2-9
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D (. x') = & {In; (®) - n (2)1%} .

Where Dn (r, £') is a function of r - r'only, the random field
n(x) is said to be locally homogeneous. If Dn(g,lg') is a func-

tion of |r - r'| only, then the field is locally homogeneous and

isotropic. The structure function is occasionally more convenient
to use than the covariance function since it allows a simple
description of locally homogeneous fields without assuming homo-
geneity. However, the atmosphere is neither homogeneocus nor
locally homogeneous in the sense above. At a given point in space

it is instead possible to find a small surrounding volume within

which the condition for homogeneity is satisfied, and a slightly
larger volume within which the condition for local homogeneity is
satisfied. 1In most practical cases the extra generality of the
structure function is not very important. 1In a nearly homogeneous

volume the two functions are related by
0 - ’ L]
Dn(g) = 2epn( ) an(g) (2.6)

where r now represents the difference r - r'.

2.2.3.3 Scales and Structure Constant

In terms of the above defined functions we can define two important
scales of the turbulence. The inner scale Lo' of the turbulence
is the dimension of a small region near r = o where the structure
function is well approximated by the first term in its Taylor
series. If the turbulence is isotropic this scale is the same
in all directions. The outer scale, Lo is the correlation dis-
tance of ®n (r). These scales will be tied to specific formulas
later, allowing us to evaluate them numerically. 1In isotropic

turbulence with r in the range

4 << r << L
o o
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we can usually write

=c? .9
D (r) =c”x3. (2.7)

The constant an is called the structure constant of the refractive
index, and plays a very important role in the study of turbulence.
The power, q, has been shown by the theory of Kolmogorov and
Obukhov [Tatarski, 1971] to be

q = 2/3.

2.2.3.4 The von Karmdn Spectrum and the Kolmogorov-Obukhov Theory

The above discussicn has been relatively general, since no
specific covariance has been assumed. In the following we intro-
duce the von Kérmgn spectrum which has been suggested as a pos-
sible approximation to the actual wave number spectra arising
in atmospheric turbulence [Tatarski,1971]. This spectrumhas been
verified experimentally in certain cases but, as we shall see, it canbe
necessary to use correcting terms in the inner scale region. The

wave number spectrum is (nearly homogeneous and isotropic field

assumed) :
2 3
T o o r
& (k) = (2) .09 m> 3. (2.8)
n 3/2 r m-3 2 2 \m/2 ' .
n ( 2 (l +k ro )

The corresponding covariance function is

® (r) = o;‘: 23 m72, r ( r_t-_3 ) (f;>(m-3)/2-xm__£é (-:—o). "7
2
(2.9)
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In these expressions °n2 is again the variance of the refractive

index, and r, may be considered equal to the outer scale L, of
turbulence. The exponent m is usually called the refractive

index spectrum slope since it indicates the slope of the spec-

trum when plotted on a logarithmic scale. From the small ]
argument expansion of the Bessel function Kv' v > 0, it can be

verified that in Eg. (2.9)

2
Un @n (o).

Since I' (o)== it is seen from (2.8), (2.9) that spectrum slopes
of 3 or smaller may yield negative or infinite power g (0)!
The main reason for this is that the correct microstructure of

the turbulent field has not been taken into account.

1f the von Kirman spectrum is used a relation can be found
between the variance of the refractive index, and the structure
constant., For r << r° it is found that

2 r(%

1 m-3
r=E) (@5 )

e 3 cmc< 5

Dn(r) ~ 2 L

or Sem
1‘(‘2 1
C =g 2

n n r(:%%g) (2r )m—3 (2.10)
()

For this to be valid it is further required that m < 5. 1In the
special case of m = 11/3, as predicted by the Kolmogorov-
theory (see Tatarski, 1971), we get i

2/3 _ 2 2
i o zcn - p1/3 1(.:2 0.637 ¢ (2.11)
% )

Ifm=25 it can be shown that
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(r) w? [/ @s 5
Dn r) ~ o 2r° (m-5) , m>

2
2 r /X
L o] o]

We have assumed a locally homogeneous and isotropic medium,

which is invalid when r is large in Eq. (2.9), or when k is small
in Eq. (2.8). 1In fact, it is usually possible to assume that
k r, >> 1 without jeopardizing the validity of Eq. (2.8),

2 .,-m _ 3-m F<%>

Qn(k) >~ o, k r ﬂ325¥;(E§§>

- —Ii§=31 sin (3 (m—3)) cn2 k™, 3<m<s5. (2.12a)
41

In particular, for m = 11/3 we get

2 ,.-11/3
Qn(k)'m 0.033 Cn k

(2.12b)
This is the form in which the spectrum is most often used in
turbulence theory.

As noted earlier, if k becomes very large, it is necessary
to include the effect of the microstructure of the turbulence
(e.g., the inner scale of turbulence). Tatarski (1971) has
derived the expression (for m = 11/3)

2

2 .-11/3 X
8 (k) = 0.033 c ° x exp (- ;—; )
m
2-13




where
km = 5.92/{,° .

The approximate structure function is

f
2 -4/3 2

Cn Lo r r << Lo

D (r) =§

o 2 r2/3

Kn

<< r
Lo << Lo R

1, is the inner scale of turbulence.

If an exponential factor like the one in Eg. (2.13) is used
for other values of m in the general van Karman spectrum then the restric-
tion m > 3 is no longer necessary. However, the variance of the
refractive index will be strongly dependent on the inner scale,

L0 when m < 3, while practically independent when m > 3.

2.2.3.5 Theoretical and Empirical Evaluation of the Relevant
Parameters

In Section 2.2.1 an empirical formula for the mean refrac-
tive index was described. It relied on measurements of pressure,
water vapor content, and temperature. A similar formula can be
found for the variance onz or the structure constant an.
Tatarski (1971) has shown that the following expression can be
used for cn2 in the Kolmogorov-Obukhov theory,

4/3 M2 (2.14)

C 2 e c . L
n o




and

-6
e I Gy (@ )
(2.15) 3
In the above expression,
L, Outer scale of turbulence (in meters) ’
P Total pressure in m-bar
T Temperature in degrees Kelvin

S ific humidit
q~0.62 eo/P pec Y

e Water vapor pressure in m-bar

o

z - Altitude (in meters)

Ya .0098°/Km (adiabatic temperature gradient).
2 2/3

C_° then has the dimension of m “/~. sirkis (1971) has used this
formula to determine the dependence of M2 on altitude and humidity
for a typical atmosphere. The result is shown in Fig. 2.2. Up
to about 2 km little variation with height is found, but c_2 can
change two orders of magnitude when the humidity changes. Taking
the values at the 2 km height and using the values of 20, 50,

100, 150 m for L_ yields the values for °n2 listed in Table 2.1.

TABLE 2.1
Typical Values of 1015.-cn2 (2 km) (Data by Sirkis, 1971)
Surface Water Vapor Pressure eo
Lo/m 0 5 m-bar 15 m-bar 30 m-bar
20 .68 4.6 38. 106.
50 2.3 15.5 129. 361.
100 5.8 39.0 325. 910.
150 10.0 66.9 558. 1,562. ;
2-15




£

Fig. 2.2 Structure Parameter as Function of Altitude with
Sea-Level Water Vapor Pressure as parameter.
(From Sirkis, 1971)

2-16

0 AR L B AR o 75 12 i




In Table 2.2 these numbers for an are converted to numbers for

2 .
o, using Eq.

%n

(2.11),
2 157123 o2
0 n
~ 2 .2
= 4.4 LO M o
TABLE 2.2

Typical Values of Refractive Index Variance onz .

10

Surface Water Vapor Pressure
Lo/m 0 5 m-bar 15 m-bar 30 m-bar
20 .08 .52 4.4 12.3
50 .5 3.3 27. 77.
100 2.0 13.2 110. 308.
150 4.5 29.7 247. 593.

13

To. get an idea of typical humidity levels we list below the water
vapor pressure measured by radiosonde at Albany, NY, November 5,
1976 (morning).

Altitude (m)

86
145
256
733
927

1197
1297
1362
1456
1656
1995
2977

Water Vapor Pressure (m-bar)
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6.02
5.80
5.08
3.35
2.56
2.84
1,73
3.48
3.27
3.81
4.31
2.73




Several measurements at Albany and Buffalo of the same time-of-
year gave very similar results with surface water vapor in the
range of 4-8 m-bar. Lower values can be expected in colder winter

months, while considerably higher values are typical in the summer.

Several researchers have made measurements of an. Radar
reflectivity measurements [Kropfli et.al., 1968; Hardy and Katz,
1969] indicated an to be in the range

Weak scatter: an - 20 - 10 13 m-z/3
Medium scatter: an >~ 100 - 10-15 m-z/3
Strong scatter: an - 6000 - 10-15 m-z/3 .

The two first numbers match fairly well with the results in
Table 2.1 for L° = 50 m. The strong scatter returns measured
could be due to atmospheric layering. Most (~75%) of the reported

measurements lie in the range 0-100 - 10-15 m—/23.

Brookner (1970) reported on some measurements of the optical
an performed by Goldstein, et.al., (1965). A typical measurement
of °n2 vs time of day is shown in Table 2.3. Brookner (1970)
then uses the following values for cn2 as typical at optical wave-

length

Weak scatter: an ~ .5 10" 13 m-'z/3
Medium scatter: an ~ 50 10.15 m-2/3
Strong scatter: an ~ 500 10-15 m'-z/3 .

These somewhat arbitrarily chosen values should be compared with

the dry air column in Table 2.1.
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cn2 vs Time of Day ([Goldstein et. al., 1965)

TABLE 2.3

Time 10'% . ¢ ? /3
1200 14
1300 140
1400 490
1500 90
1600 20
1700 4
1800 .4
1900 ~ 0
2000 .2
2100 1
2200 2
2300 3
2400 6

Approximate relationships for the inner and ocuter scales
of turbulence have also been obtained [Brookner,1970; Fried, 1967],

L. =~ 10

(o]

L o
o

2

h

-3 h1/3

2=-19

(2.16)
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SV

Lo' Lo and the height h are all in meters. As an example, these

relations yield at a 2 km height,

Lo ~ 13 mm

L ~ 90 m.
o

Superimposed on these relationships are variations with time-
of-day, season, weather, etc., so they should only be used as a

general guide.

. [ 2 3
The variation of cn with height has been found empirically

to be §
2 2 2 _-b
Cn Cn (h) = Cno h — exp(-h/h,)

Fried (1967) used b = 1/3, ho = 3200 m. In fact, cnz(h) was
found to be of the form

2 -
o 2 = 6.7 - 10 14 xp(-h/3200 m).

These results are for optical frequencies, which should corres-
pond to dry air at radio frequencies. A comparison with Fig. 2.2
shows that the expected height dependence is somewhat weaker than
indicated by the model of Fried. On the other hand newer data
indicates a much stronger height dependence, with b ~ 2/3 and

ho ~ 320 m {see Brookner, 1970, 1971]. Hence the issue of height
dependence is not quite resolved, although it appears (see Fig. 2.2)
that variationé in the first 2-3 km can be ignored, while for-
mulas of the form above can be applied at higher altitudes. Addi-
tional data on both the optical and the microwave refractive index

variance can be found in Gossard (1977).

From the existing data we can conclude the following typical
values (at a height of 1-2 km)
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2.2.4

- -2/ -
cnz =~ 10 15 m 2/3 (8ry air) to 10 14 (maritime air)
°n2 >~ 5 - 10-14 to 10-12, depending on humidity; {
5 + 10°1% will be used to
represent winter conditions.
L = 70 m
o

L =~ 10 mm.

Results from the Theory of Turbulent Scatter

It is well known that the power received from a gmall scat-

tering volume can be written

where

2
PR'=PT.GT2. asz.XGR' (2.18)
411RT 4ﬂRR 4

PT = Transmitter power
GT = Gain of transmitting antenna
RT = Distance from transmitter to scatterer
a' = Scattering cross-section of the turbulent volume
RR ‘= Distance from scatterer to receiver
A = Wavelength
GR = Gain of receiving antenna.
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Eq. (2.18) also serves as a definition of the scattering cross-
section (some authors. define as/4n as the scattering cross-section).
In section 2.2.2 we describe some general relationship derived

for atmospheric layer scattering. Tatarski (1971) has derived

the cross~section of turbulent scatter with a given wave number

spectrum,
2 4 . B .2
a 8n k Qn (Zk sin 5 ) sin ¥ 4av, r << ) << Lo
(2.19)
In this equation,
kX = 21/)\ is the wave number,
& (k) is the locally homogeneous and isotropic wave
n spectrum (e.g., Eq. 2.8)
) is the scattering angle
sinzx accounts for loss due to polarization mismatch
(usually negligible).
X angle between incoming electric field and dir-
ection of propagation.

av is the infinitesimal volume.

Eq. (2.19) is derived under the assumption
LO << .’ ),RR ’ ./ X&r

but has been verified at much higher frequencies. If a spectrum
of the von Karman type is assumed in the inertial subrange (i.e.,
Ly << A << Lo)' it is found |

a_ = c:“2 8/ n ki mp 3 L(-?')— (2 sin -2Q )—m av.

' =

Polarization losses have been ignored in this equation. For
: m = 11/3 we get the cross-section prediction by the Kolmogorov-
: Obukhov theory, while for m = 5 we get the semi-empirical formula
in Egq. (2.5). The data for Eq. (2.5)are mostly at frequenciesbelow
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1l GHz. Newer experiments at higher frequencies indicate that
m = 11/3 provides the better fit to the data (e.g.,Seehars,1971). At
intermediate frequencies a mixturgq of the different effects may

be described by an equivalent m in the range 3 < m < 5., Combining

the above expression for a_ with Eq. (2.18)

1 . A(z
-5 [2 sin —52=)-]"“‘ a’r, (2.20)

R2 ()R (1)

v
where

r(2 :

c= i ro3-m K2 . z—ﬁ%‘i—’)—?‘—) (2.21) i

2

and V is the total scattering volume. Typical values of the at-
mospheric parameters ci and r, = L° were described in the previous
section. The spectrum slope m is 11/3 for turbulence theory and

5 for the NBS model. Direct measurements of m were performed by
Eklund and Wickerts (1968) by comparing the received power at 1
and 3 GHz at two antennas with the same beamwidth. Average values

©of m in the range of 11/3 to 5 were measured, and a significant

correlation with the signal level was observed. This is consistent
with the theory that both turbulence and layer reflection are im-
portant at these frequecies since strong layering both increase m
and the signal level. Eklund and Wickerts concluded that reflection
is dominating at 1 GHz and turbulence at 3 GHz.

Gjessing and McCormick (1974) also report measurement of m in

| the range of 2-6 and give an empirical formula for m (Gjessing et.al.,

1969) and an empirical distribution. However, the validity of these

; results is apparently limited (Sherwood and Suyemoto,1976) particularl
since a strong frequency dependence of the equivalent measured m

should be expected from the discussion above.
2=23
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2.3 Path and Antenna Parameters

In this section we list the parameters that are required to
specify the troposcatter path completely, and briefly comment on
the significance of some of these parameters. Most of the models
developed in the past have used only a subset of them, or have
used some of them indirectly through other auxiliary parameters.

A few secondary parameters characterizing the path will also be

discussed.

2.3.1 Path Geometry

A typical path is shown in Fig. 2.3 with some of the param-

eters involved. The parameters are

° Frequency £
o Distance 4

° Heights hq,hp of transmitter and Receiver antennas above
mean Sea Level (MSL).

° Horizon elevations above horizontal (8qg,6pg) at trans-
mitter and receiver. These angles can depend on the
atmospheric conditions.

° Antenna boresight elevations above horizontal (AT,e ) at
transmitter and receiver.

Note that 8p-8pg and 6z-6z; are then the elevation
of the antennas above the horizon. The definition
of "boresight" need not be the direction of maximum
gain, but may be defined from mechanical considera-
tion (e.g., the normal to a phased array).

L Azimuth pointing angles op,ogp if horizontal diversity is
employed, or beam swinging experiment performed.
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) Gain patterns Gp(f,9), Ggr(6,p)of transmitting and re-
ceiving antennas. Determination of the gain patterns
requires a number of additional parameters - size and
type of antennas, height above ground, ground profile
and reflectivity. The patterns should be referenced
with respect to the boresight direction. Both ampli-
tude and phase of the voltage gain patterns are required
when the cross correlation between two (diversity) pathe
is to be calculated.

° Polarization of transmitter and receiver
. Bandwidth
° Power

E L Atmospheric parameters K, ci, wind velocity,attenuation,
} etc. (See section 2.2)

The performance is particularly sensitive to the antenna eleva-
tion angles which are often not adequately specified in actual ex-

periments.
i 2.3.2 Antenna Parameters

In most theoretical studies it is assumed that the antenna pat-
tern has an ideal rectangular shape. This ideal pattern is extremely
convenient for analysis, but the actual pattern is substantially
different. An equivalent ideal beam shape may undoubtedly be postulated
but a general relation of this to the actual beam shape is not well defined
% Often the 3 dB beamwidth is arbitrarily chosen to define the equivalent 5'
‘ ideal beam. We shall later (section 6) estimate how good such f
L an approximation is for troposcatter purposes. For simplicity the

considerations will be limited to the parabolic dish.

The gain pattern of a parabolic dish can easily be evaluated

for a uniform illumination by the feedhorn, as well as for some

specific non uniform illumination patterns.
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# Let
a = radius of the circular aperture
A = Area Of aperture
)\ = wavelength
6 = angle off boresight
r = distance from center of aperture

b(r) = illumination of aperture; b(0) = 1.

The voltage gain pattern is then

jznx sind
= irf A o
g(8) = cos 8 AL da e b(r) el < >

where x is the distance from the center along the line at the
intersection of the plane of the aperture and the plane determined

by the incoming ray and the aperture normal. Hence, using the co-
ordinates (r, ®) in the aperture, 7

2T .
JT cosp sinef

a 21
g(p) = cosé f rdrj do b(r) e
2

! mna o o

< Co

Jladr b(r)-r Jo —— sin 9)
a o

If the aperture is uniformly illuminated then b(r) = 1, and

g(e) = 90('3) =2 cos 0 Jl(& sin 9)/ 2"‘ ip 9) .

425, Y

If we try a non uniform illumination of the form

-

b(r) = (1 - (r/a)z)“ :

| then Jinl(_z;:a sin 9)
9(6) = g, (m) = cos @ 2w g — .
ne

(3 ,

M+l

; 227




The half power beamwidths are determined by (ignoring the cos 8

term)
5 1.616 b=0
2—;’-5 sin ( 3;’3) ={ 1.815 =
1.994 b= 1

The beamwidth for 4 = 1 is approximately 23% larger than for uniform
illumination, and this is close to the performance that is obtained
with practical dishes. If we define the beamwidth efficiency of the

antenna as

. . b area with uniform illumination giving actual 3 dB width
efficiency real area of the dish

we get:
100% M =20
efficiency = { 79% = X . ‘
66% H =1

It can also be useful to know the null-beamwidth of the antenna.

If B is this beamwidth, we have
null

B 3.832  u=0
2ma . nully _ -
—x—-51n ( > > 4.493 H 3 .
5.136 =1

The nullwidth with non uniform illumination is much wider than the
3 dB width. Finally the level of the first sidelobe can be found 3

for the general beam pattern above,

~17.6 aB m=20
sidelobe level = -21.3 4B uo=
-24.6 dB H =1




: For the remote sidelobes the envelope of the asymptotic expansion
R of the Bessel functions can be used as a bound,
[ 2
(u+1) ’] -2;-3
c(e) = lg(a)|? S cofo=—— ‘T gin o) 7 .

A nonuniform illumination is often used on purpose to achieve the
much better sidelobe properties at a small cost of aperture effi-

ciency. The antenna gain G can be evaluated as follows:

2n n/2 2
4an/G =£ dcp£ ae sin 0 |g (M|

2
n/2 J (c sinR)
2
(c sin @) 1
where
c = 2§3 > 1 .
Hence 2
2 cJ (t)
ﬂ
2/6 =4 awy” S [ A 4
L - 6 2u+l
c t
i 2 J
G = 1t2u , F 2man
(1+u) LA o
A definition of gain efficiency analogous to beamwidth efficiency

results in
100% H =20

gain efficiency = ( 89% no= .
75% =1
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2.4 The Troposcatter Model with Wide-Beam Antennas: Path
Loss Calculation

The path geometry of Section 3 and the tropospheric scatter
model of Section 2.4 will be combined to find the performance of
some typical, although idealized, troposcatter links. It will
be assumed in the following that the earth is smooth and non-

reflecting and that the antenna beams are pointed just above the
horizon.

2.4.1 Theoretical Development

The integration over the common volume will assume a spectrum
of the von Karman type, so that the path loss Lp is given by
Eq. (2.20).

L, = -10 log [% i1 RR (r:R [2 sin ﬁiﬁl]‘m 3i]

(2.22)
where C is given by Eq. ( 2.21). The integral will be evaluate
by integration over the transmitter and receiver elevation angles

Bme
T
The integration is illustrated in Fig. 2.4 by a view in the great-

eR and the distance z perpendicular to the great-circle plane.

circle plane, i.e., the z-axis is perpendicular‘to the paper.
The angles OR’ Om are defined by
- + 4/2R
o = O e

<+
GT = a'r d/ZRe

where Re is the effective earth radius eR and eT range from the
horizon (GTG' eRG) and up. The distance do is

do = 2 R, sin (d/zae).
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and the scattering angle in the great-circle plane is
% = og* op -

The infinitesimal integration volume dV is projected onto the

great-circle plane at the distances R_, R

or OR from the transmitter

and receiver, where

ROT = do sin qR/51n 6o

ROR = do sin qT/sln CH

The total distances from the point of integration to the terminals

are
and

RR = J RORZ + z2 .

The scattering angle g at the point of integration can be deter-

mined by
2 (2 sin k\z + z[ (1+z, %) (1+2 2)]’E -2 + 2z 2
(2 sin g) = 2. > I > § IR
[(1+zT ) (142 )]
where
| Zp = 2/Rop
and

=
zo z/R°R .

It is now assumed that the strong scattering angle dependence

allows us to ignore points where z >> RoR or RoT' This approxima-

tion is good if g is small enough. Hence it is found
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(2 sin'g jz =~ (2 sin -92—°>2 +,-E-5 ’

where the distance Ro is defined by

RO ROT ROR

The integrand in Eg. ( 2.22) is first integrated in the z-direction

(-]

-o R Bp Ror Ror -

———29—— (2 sin — ° 1-m B(z .

OT ROR

B(x, y) is the beta function,

T ()T (v)

B(x, y) = T (x+y)

The infinitesimal area in the great-circle plane is
dA =R _d 'Rd/s:.ne.

oT oT OR aR

The path loss in Egq. ( 2.22) now becomes

-1_/10 /2 /2 0,
10 P =c, [an, [ da [(RogtRog) #in 8 (z sin -2 “"1]
%o %Ro
where

2~33
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l m-1
C.=CB (2, >

+
%o - % 7 ®re

and

2
L]

d/ZRe .

We now involve the small angle assumption,

| : o
‘i sin eo d eo
8
. Jo _
2 sin > eo
o+ O e .
ROT ROR do d

Lp is then with good approximation given by

[ aay [ day (o v o™
a

+
o e %t

-Ly/10 _ . 1
10 C, a

G

)

2-m
* dm-1) (m-2) (2“0 *0%c* ers)

c sk, =

d 2-m
a(m-1) (m-2) (R. * fet °-rc,) ( 2.23a)
In this equation the factor C contains terms depending on frequency,
spectrum slope m, correlation distance L and the refractive index
variance. From Eq. (2.21) we have
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¢ = o2 5 @ r(3)/ (2 rB2)).

Assuming for simplicity that eRG = QTG= 0 (no elevated horizons)
and introducing the expression for C in terms of the known param-

eters we get

-1,/10 _ {(m=3) . 2 3-m _ 2-m QZTm
107110 = s - o TR o /a ( 2.23p)

The approximations made are good when d << Re and m > 3. Waterman
(1958) has evaluated the integral in Eq. ( 2.22) exactly for m an
even integer and eTG = eRG = 0., For small values of d/Re his

result agrees with Eg. ( 2.23).

Eq. ( 2.23) was derived assuming constant values of onz and
r, = Lo' The empirical results of Fried (1967) indicates that
onz and Lo depend on height,

2 2
° * 9o *P t—h/ho]

L =1 (h/h )%
0o 00 o

where Fried found that

h = 3200 m.
o [}
o %2 =6.7. 1014 e
no
L, =113m

The discussion in Section 2.2.3.5 indicates that ho may be
smaller and that cio can be quite different from the values
indicated above. For equal height of the terminals
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h < Re(emin- (6. -8 )

2\ e2
RG TG° /\ min

2 2
"(enc;+ G'rc;) >/ eemin

and Lp can be written directly in terms of usually specified

parameter.

2.4.2 Comparison with Other Methods

A number of empirically based methods exist to predict path
loss. Unfortunately most of the empirical results were found at
frequencies below 1 GHz, where layer reflection is likely to be
more dominant than turbulent scatter. This means that these
methods often have limited applicability at higher frequencies.
One of the most widely used techniques is that developed by NBS
(Rice, et. al., 1967). At distances such that Afd < 10 km the

predicted path loss with omnidirectional antennas is

‘-

Ad
1l km

+ 10 log ldkm + 30 log € dB

£
= - + [ ] +
L, = 135.8+0.34 30 log T

3

= -74,2 AB + 0.34 * 10 ~6d + 30 log £ + 10 log d + 30 log b

where 6 is the scattering anéle in radians and all other units
are MKS. This has the same form as Eq.( 2.23) if m = 5, This
is consistent with the fact that the NBS method is mostly based
on measurements in the 100-1000 MHz range, where layer reflec-
tion is expected to dominate the scatter mechanism. Hence the
values of anz and r, found in Section 2.2 for turbulent scatter
are not directly applicable,but can be chosen to fit the above
equation, which could then be used at low frequencies. We shall
restrict the comparison to nearly symmetric links. First, let
the term .34 - 10-3 6d be due to variations of an with height
of the form '
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2 2
= M- = - +6 +
o o exp'-h/h ] = exp(-d(¢ GT GR)/Bh ).

Assuming small elevation angles it is then seen that

3 _10 1

.34 + 10 © =57303 eh_

or
h = 1.6 km.
o
This is only two times smaller than the value suggested by Fried for
optical system, and compares favorably with other data (Brookner,1971;

Gossard,1977). By comparisonwith Eq. ( 2.23) c:xzw/ro2 is found,

ono2 °n2 =15 =2
_.? = ._2 = 5.8 - 10 m
r r ~

(o) o th~-o

This number would also be found in a humid turbulent atmosphere.
At higher elevation the dependence of r, on h is significant.
This is reflected in the NBS method by the use of a different
formula when 64 > 10. It can be verified from the above numbers
that the Fried formula for cnz ro-z/ 3 combined with the rest of
Eg. (2.23b) with m = 5 deviates by less than 1 dB from the NBS
method in the altitude range 300-3000m.

We can now compare layer-refledtion with turbulent scatter.
Fig.2.5 shows the expected path loss as predicted by the NBS formulas:;

and the path loss is predicted by the turbulent scatter theory with

onz = 5 » 10-14(typica1 for dry air)
r = 70 m

(-]

m = 11/3,

It is clear seen how turbulent scatter is dominant at higher
frequencies and distances. In the transition region (usually in
the band between 1 and 10 GHz) both layer reflection and turbu-
lence canbe dominant, depending critically on actual parameters

and therefore also both on location and season. In wet
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air the turbulence signal canbe 20 dB stronger. Several methods
other than that of NBS are discussed by Panter (1972). We can
mention the CCIR method (nearly the same as the NBS method), Yeh's
method and the method of Collins Radio.

The method of Yeh predicts the path loss

+ 20 log =9— + 573 a/R_ - 0.2 (N_ - 310) + 57

£
Lp =,}0 log 1 MHZz 1l mi

where Ns is the surface refractivity. This is shown in Fig. 2.6
for a 5 GHz link, together with some of the other prediction |
methods. |

The method of Collins is based on an experimental curve at
1l GHz. An excellent approximation to this curve up to 300 mi

yields

d
1 mi + 34,

Lp = 30 log + 80 log

1l GHz
This curve is also shown in Fig. 2.6 at £ = 5 GHz. The received
power by Collins method falls off much more rapidly as a function

of distance than does any of the other methods.

We conclude that the turbulent scatter theory agrees well
with other methods in the frequency range of 2-5 GHz, and that
the method of NBS is more accurate at lower frequencies. This
means that lower values of the spectrum slope, and higher values

of the refractivity variance should be used at lower frequencies,

but the model with a von Karfan refractive index spectrum may
still be used.
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2.4.3 Preliminary Comparison With Empirical Results

Numerous measurement of tropcscatter loss have been made in
the past, but we shall only chose two examples for comparison

here.

The first example is a 210 km European path at 12.3 GHz
(Abel, 1971). The parameters of the path and the median received
field are listed in Table 2.4.

TABLE 2.4

Parameters of 12.3 GHz Link (Abel, 1971)

Transmitter: 10 w

Distance: 210 km

Frequency: 12.3 GHz

Total Antenna Gain, G'r + GR: 80 4B

Minimum Scatter Angle (K = 4/3): 11 m-rad

Antenna Diameter (Both): lm

Median field Strength, Winter: 16 dB/—l'!""'lx -
Summer: 22 ap/ ¥

The antenna beamwidth (33 m~-rad) is large enough to apply the
widebeam results of Section 2. 4.1. From Table 2.4 the measured

path loss is found:
Path Loss (Winter): 225 4B

Path. Loss (Summer): 219 4B.




The "predicted path loss" is found by inserting the above para-

meters in Eq. ( 2.23a), using

m = 11/3

o =510 (ary air)
and

ro = 70 m,

With these parameters the estimated path loss is
Path Loss (calculated) = 220 4B,

which certainly is very close to the measured loss. If a small

coupling loss is associated with the path the theoretic loss will
probably be closer to the winter measurements where the humidity
is low. The stronger signal measured in the summer is due to the

higher humidity (on2 larger, see Table 2.2).

Now consider some recent data on a 4.8 GHz link (Sherwood
and Suyemoto, 1976). The parameters and measured pathloss on this

1link are listed in Table 2.5.

TABLE 2.5
Parameters of 4.78 GHz Link (Sherwood and Suyemoto, 1976)

Power, PT: 1000 w
Distance: ’ 86 st. mi.
Frequency: 4,780 GHz
Total Antenna Gain, GT + GR: 78.2 aB
Antenna Diameters (Both): ' 8 ft.
Horizon Elevation (Both): .75°
Median Received Signal Level, Winter: -96 dBm
Median Received Signal Level, Summer: -84 dBm
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The parameters in Table 2.5 yield the measured path loss

or

=Pp_+ + G - RSL,
L, z* Sp* S

Path Loss (winter): 234 4B
(summer): 225 4B .

This is now compared with the path loss predicted from Eq. (2.23),

using again the parameters

m=11/3

ci =5 -107  (ary air)
r = 70 m.

o

Inserting the parameter above and those of Table 2.5 in Eq. (2.23a)
results in the estimated path loss:

Path Loss (calculated) = 222 dB.

This is close to the median measured in the summer. Theoretically,
with the assumed parameters, the results should be closer to the
winter measurement. However, a small coupling loss is undoubtedly
present (5.2 @B according to the CCIR formula) and the uncertainty
of t?e atmospheric data (e.g.,height variation of chg'and ro)shows
that the measurements are again consistent with the turbulent scat-
ter model. In Table 2.6 below the results of the above two com-

parisons are summarized.

2.5 Spatial Correlation at Receiving Site

The derivations in this section follow the development in sec-

tion 2.4.1 closely and we will therefore refer to that section for
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Table 2.6

Comparison with Empirical Data (Summary)

1 Path 1 Path 2
{ (Table 2.4) (Table 2.5)

Median measured path loss, i
_winter | 225 aB 234 a8 |

IMedian meas. path loss,
‘ summer 219 4B 222 dB |

iPath loss calculated
using m=11/3,ro = 70m, !
and 02 = 5 - 10-15 220 dB 222 dB
coupling loss not included

intermediate results. Horizontal and vertical correlation will be
considered separately. The case of a wide beam transmitter is

treated first.

2.5.1 Horizontal Correlation, Wide-beam Transmitter

Suppose a second omnidirectional receiver is situated a dis-
tance b from the main receiver. Assuming b is small we can still
use the integration volume in Fig. 2 .4 for both received power
levels as well as for calculating the correlation. The only 4if-
ference from the integration in Section 2.4.1 is that the inte-
grand is modified by the phase factor.

. kb
- — 2z
.e"n
where z is the distance from the great circle plane in Fig. 2.4.

As a reasonable approximation assume that z << RoR' so that

- RoR *

RR = (Rokz + zzyi
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The correlation, Ny is now (compare Eq. (2.22)

kbz

-j—-

R
_ o 1 oR
ngP) =¢C i T2 e

VRR RT

-m
(2 sin %} a3

2]

The integration in the z direction (perpendicular to the paper in

Fig.2.4 becomes

_j—

f az e oR (2 sin -Q) 1
o 2 R 2 2
v Br
R A l-m = .
= ———'—20 2 ‘2 sin = P e-JBx(l+x2)-m/2dx
R R ' 2 Vo
oT OR
R 6 . 1-m
_ o ... _O 1l m-1
= -————R > - 3 (2 sin 2) B(z, = ) Fm(B)
oT OR
where
6
kb . [e)
£ = R 2 Ro sin 2
OR
and
P () = —— (E)m.m K1 ,,(8).
m r(m-;> 2 m-1/2
2

We are primarily interested in finding the integral of nH(b) but
note that the above formula can also be used to f£find higher order

momente of na(b). If we write g = b ¢+ g, where

kR 8

a = —2 2 gin ~2 ,
R 2
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we use the well known Fourier relation

r ejaxydxz%b(y)

and get
) /2 1'[/2
(b)db = Z€ da. da, =2~ (sin o ) 1(2 sin 8 /2) ™
£ nH k Ia R i QT RoT © ©

RO To

21
~ xa £ dap oy -1

n¢ ‘min o _1 (
kd “mel,C, m-1+k \q_*
(o]

In this equation,

e =q,.+0a =R

+ +
min To Ro £ eTG eRG

is the scattering angle. Let us define the function

[-
1l
Bn(x) = n T ey xk s 0<x <1
’ k=0

the following bounds on Bn(x) are useful

(1-xeV™ ™ <8 0 s ™

The lower bound is often an excellent approximation.
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B

@ 6 Q.
r nC min To
[ n () db =I5 WD g —Io
é H ka (m—1)2 m-1l ( uTo+ uRo)
A
R Po-1 oo/ Pmin’
2 H m~1l “min B(l m=1%\
2 2.

nH(O) is the receiver power calculated in Section 2.4.l1l. The hor-

izontal correlation distance is defined below.

Definition of Horizontal Correlation Distance:

L, = f_w”n‘b’ /1 (0) - (2.24)

With this definition the result is

LHemig o =2 Bm-l (aTo/gmin>
- -1
YT s )

. (2.25)

Note that for a symmetric link (eTG = eRG) aTo/emin = 0.5 s5 the
right hand side in Eg. (2.25) is then independent of the distance

and the elevation angles.

2.5.2 Vertical Correlation t

We now determine the spatial correlation in the vertical
direction. Suppose the line along which the correlation is
taken is tilted a small angle 8 from vertiqal. b determines
how far the combined antenna is pointed abéve éhe horizon.
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In this case the phase difference between the two received

signals is

kb sin (BR- 5)

e A

where again b is the distance between the two receivers. The cor-

relation, nv(b) is

-jkb(ebe)

—— (3sind) &% .

r
nv(b) =c IJJe 2

2
v RRRT
Integration along the z-axis is just as in Section .4.1, so

/2 /2 -jkB(o.R-aR +a8_ _=§) i

= ~ o RG ~
nv(b) C, £ as,, .y da. e _(R°T+R°R)
To RO
] -1
. . _0,m=17]
sin 60(2 sin 2) B
c -9 - + - -
- 2 I" . kb (ap=ap *ore 6)(a . )1 ™ a o -
d(m-1) A To’ OR
RO
Here cz is again the constant
1 ml ;
c,=¢C B3 .5 ) ’

ﬂv(b) can be written in terms of the incomplete Gamma function of

a complex argument,
m_lejkb(aT°+aR°-eRG+6)e-jn/z(2-m)

C
n, ) =3 (kb)
r(2-m, 3kb (o, +a )

d(m-1)
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In analogy with the horizontal diversity the correlation distance
should be defined in terms of
(-]

Jr nv(b) db/nv(O).

-
However, in this case it is important that the aperture is aiming
at the right point over the horizon,so the definition must include

rd

an optimization of the angle §,

Definition of Vertical Correlation Distance:

L, = max L n_(b) db/n_(0) (2.26)

It can be verified that the maximum is at & = eRG+ (cor~

responding to physically aiming the antenna just above horizon)

and that
® o
2 21 l-m
z —F— == +

e WP =T D K Cre’” ro
so that

L A

—vmin _ _v /4 6 = wma

3 3 (Re + 8o * 9 ) = me2 (2.27)

Compared to the horizontal case it is seen then Lv is larger than

LH by a factor of 2.6 - 3.4.

2.5.3 Comparison of Horizontal and Vertical Correlation Distance
With Results by Gjessing and McCormick (1974)

Gjessing and McCormick (1974) give the following approximate

expressions for the correlation distances (also assuming a wide-

beam transmitter):
2=49
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80 _ ___0.44
ARg (4l/m_ l)%
L@ _o0.44
AR, zl/m_ 1

These formulas clearly assume that the horizon angles are zero.
A similar method by Waterman (1958) yields expresions of the same
form, but with different parameters. A comparison of these ex-

pressions with ours is shown in Table 2.7.

Table 2.7

Comparison of Formulas for Correlation Distance
(Symmetric Link. Smooth Earth)

1

Spectrum Slope m: 3 11/3 4 ) 6
LHd
R (Eq.( .25)) 0.39 ., .64 0.65 : 0.95 1.18
Re : !
Gjessing and McCormick: .57 .65 .68 | .78 .86

(Eq.( .27)) 3.00 ., 4.00

Gjessing and McCormick 1.69

It is clearly seen that there is only little difference between
the results here and those of Gjessing and McCormick (1974). The
experimental verification in their paper therefore also applies
to our results. However, our approach is more accurate (asymp-

totically exact integration), more general (includes elevated
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horizon angles), and is based on a definition of the correlation

distance which has a direct physical meaning (as discuseed in

Section 2.6).
2.5.4 Correlation Distances with a Narrow Beam Transmitter

The horizontal correlation function is extremely wide in
this case since the receiver only sees scattered power from a thin

vertical column in the horizon. So,

ﬂn(b) ~ 1. (2.28)

The vertical correlation function is found as in Section 2.5.2,
but integrating only in a transmitter beam with the solid angle
A

-jkb (A _~ A_ ) _ _ R__da
nv(b)=cfQRe R RG—%——zemnzemnzm-ﬂ%i
(o]

OR RoT

-jkb (o, - )
- €40 j e """ %ro o duR.

doy,
o)
Hence,
9l—m
v dqr m=-1
and

y . SAQ -m
._[an(b)db d%x B oin -

The vertical correlation distance is then
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r - 2 - 2.29
‘o nv(b)db/nv(O) omin (m-1) . ( )

=
]

This is almost the same as for a wide-~beam transmitter (Eq.(2.24)).

2.6 Coupling Loss - Widebeam Transmitter

Coupling loss may be defined as the power loss incurred by
not illuminating the scatterers outside the common volume. Alter-
natively it can be defined as the loss due to the decorrelation -
over the receiving aperture. These definitions are equivalent
when the transmitter has a wide-~beam antenna, while only the first

is directly applicable with a narrowbeam transmitting antenna.

Coupling loss is a commonly used parameter since it permits
the engineer to express the path loss in terms of the basic path
loss with omnidirectional antennas, the antenna gains, and the
coupling loss. However, for an actual path, such a division of
the path loss is not very useful since it requires the introduc-
tion of the atmospheric structure outside the actual antenna beams.
Thus, the coupling loss will depend on the presence and strength
of inversion layers outside the common volume! Although the de-
finition can be modified to be based on a yearly median, say,
this would imply that short term variations in the path loss has
to be included in the "basic path loss" which then would loose

its interpretation as the loss with omnidirectional antennas.

The logical approach is to calculate the path loss directly
by an integration over the common volume, using the formulas
discussed in the previous sections. This integration is performed
by the SIGNATRON TROPO-path loss computer program.
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For historical reasons it is still of some interest to calculate
the coupling loss. This coupling loss will, of course, only have
direct physical meaning if the atmosphere approaches the model
atmosphere assumed. When this is kept in mind coupling loss can

be a convenient analytical tool.

In practice a realistic coupling loss is not well defined
in the 1-10 GHz range where layer reflection and turbulent scatter

may be of equal influence, depending on location, season, time-of-

day, etc.

In the following the coupling loss for a turbulent atmosphere

is found.

2.6.1 Coupling Loss for an Ideal Narrow Receiving Beam

Consider a narrow receiving beam with unit gain in a small
solid angle A(?, and zero gain outgide. It is assumed that all of
this angle is pointing over the horizon. 1If I'pn is the path loss

with this narrow beam, and 1, is the widebeam path loss formed in

P
Section 2.4.1,the coupling loss Lc (in 4B) is

L =L ~-L .
c P pn

Lpn is now calculated. The common volume is a section of a cone,

but we can still reference to Fig. 2.4 for the integration. Lpn
is

-m
10°ten 10 = ¢ [If s— (2esind) &
Vnd RR RT
n/2 6 -
1 1 o
-cAnfdd (2 sin =~
J T Ro’r sin eo \ 2)
%ro
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Assuming that d << Re' this becomes

\ 1-111
1o-Len/20 _ __€AQ (ope * opo)
d egin %o m-1

a \1-m
Tt Ot 8pn
CAQ (Re RG TG.

d(zg * 8pa) -t

From this, and Eq. ( .23a) the coupling loss is

(8 + d 1 mr
\R_ * bpe STG) ( 2R _ + 9RG> B2

(2.30)

This expression is only valid asymptotically, e.g., for small,
solid angles AQl. If the beam is rectangular with horizontal and

vertical beamwidth B, and B . respectively, then

80 " By - By
For a circular antenna with beamwidth g, AQ is
A= m (8/2)2
For a link where e o~ e the coupling loss depends directly on

min/Ao' where ¢ min is the angular distance (minimum scattering

angle).

2.6.2 Coupling Loss of a Uniformly Illuminated Receiving Aperture

The coupling loss can also be determined from the correlatiop
distances calculated in Section 2.5. Suppose EO(E) is the field
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received at a point ¥ in the receiving aperture A Assuming

R.
that E(x) is locally homogeneous, let p(xr - xr') be the correla-
tion function,

plz -z =e{ E (@) " E )} .

The received power is then

AR AR

Perfect correlation would have yielded the maximum power,

PR, max - P Bg -
Assume for simplicity that p(o) = 1. This entails no loss of

generality. The coupling loss is therefore

10" Le/10 -A—l-z- JJJ] ez az* otz - £
R

Exact calculation of Lo is not possible unless the complete
correlation function p(r - r') is known, but simple approxima-
tions often yield nearly the correct result. Consider first a
rectangular aperture of dimensions ayr 3, 8O that

Ap ® Ay A,

The coupling loss can then be written in the form
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2 v
0 e ]y o Y0 L ()

-ay  -ay
where x and y here are the horizontal and vertical aperture

coordinates, respectively. The following approximation is often
adequate:

plr = xr') = plx-x', y-y")

= py (X = x') o (y=-vy').

This yields
! 3y

-Lc10 _ 1 ¢ 1xl 1 Iyl
-~ = 1 - a - = 1 - 4

10 ay - Py (%) ( ag ) x a, -[ py(y)( av) Y

_aa -av

(2.31)

If only the asymptotic coupling loss is considered, i.e., ags a,

large, then

L L
2 3y

where LH and Lv are the correlation distances calculated in
Section 2.5. Using Egqs. ( 2.25), ( 2.27) we get the approximate

coupling loss for rectanqular aperture:

2
2 -2 (m=2)"g /8.
L, ~ -10 log —L-—(i-rg + 8 ,“‘;1‘(0?0‘&!‘_2

anav Re TG RG.  (m=1) B(%. m;l

( 2.32)
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If the separabiiity of the horizontal and vertical coor-

dinates is not assumed, the following more accurate result is

obtained by integration over the common volume,

-Lc/lo 3 ® ®
10 - — jdx Fa o (x, y)
BV > Y
= 1 xz n-2
24%v  %Ro®min B(‘% , %}
or
a_a Bgl —-m'lz
- HV /d da 2 2
L, = 10 log 2 (Re * Opg * em>(2ne * 8e) T m-2

( 2.33)
This is the same as Eg. ( 2.30) if the solid beam angle of the

equivalent ideal beam is
2
AQ = .LA_ : ( 2.34)

where A is the aperture area. This relation assumes equal gain

for both the aperture and the ideal beam.

A comparison of Eqs. ( 2.323 and ( 2.33) shows that the
separability assumed in Eq. ( 2.32) leads to slightly different
values for Lc' However, for a link where eRG = eTG the difference
in coupling loss is only

l m-2

AL, = 10 log (5 — em_l(%))

vwhich is in the range -4.1 dB to 0 d4B.
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Let us next consider a circular aperture with diameter D.
For the purpose of determining the asymptotic coupling loss it
is easy to see that only the area of the aperture is significant
(this assumes that p(r) decreases sufficiently in all directions).

Then coupling loss for circular aperture:

- nD” sd s da_ 2’ 2
L, = 10 log :;5 (Re * obpg * aRG)\ZRe M eRG) m—2 ( 2.35)

The beamwidth of the equivalent ideal circular beam is simply

A A
D 1.27 D °

n
"
= E

For a uniformly illuminated aperture this is found to correspond
to the 4.8 dB beamwidth, using the results of Section 2.3.2.

2.6.3 Comparison With Other Results

For a link with zero horizon elevation angles, Gjessing and

McCormick (1974) suggest the formula

2 2
Re)‘
A62

%

/m -1)73,

(L) =5 211y (41/m

((Lc) not in dB). Waterman (1958) derives a similar expression: ;

Rez 2 1
- g8 (L) = (5
a c

/m /m ¥ 4

-1) (5™ - 1F,

where a is the beamwidth. From the discussion of Section 2.3.2

and the results of the previous section, a reasonable expression
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for g is

a2

The above mentioned results are compared with ours in Table 2.8.

TABLE 2.8
Comparison of Formulas for Coupling Loss

Spectrum Slope m: 3 11/3 4 5 6
2 Egq. {( .35) 1 .0.47 0.39 ] 0.22 0.15
A (L)
c2 Gjessing and
Ag . McCormick 1 0.71 0.61 0.42 0.31
min
Waterman 0.98 0.65 0.55 0.36 0.26

The essential difference between these expressions is a
slightly stronger dependence on m in our result., Also the ad hoc
methods of Gjessing and McCormick, and Waterman, seem to over-

estimate the coupling loss by up to 3 dB.

The coupling loss formula in Eg. ( 2.35) can also be compared
with experimental data. Consider the path used by Crawford, et.al.,
(1953). The parameters for this path are listed below:

Frequency €£: 4.1 GHz
Transmitting Dish: 10 ft
Receiving Dish, D: 60 ft
Angular Distance emin: 0.9° (k = 4/3)
: Coupling lLoss (relative to 8 ft,
i Dish) Measured as: 11 ds.
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In setting these parameters into Eq. ( 2.35), using m = 11/3,
yields:

Calculated asymptotic coupling loss: 7.6 dB.

The difference is due to the fact that the asymptote has not
yet been reached (see Fig. 2.7 for the typical behavior of the
coupling loss), and that the transmitting beam is not exactly
omnidirectional. In Section 2.7 we shall attempt to find how

the actual coupling loss approaches the asymptotic results.

2.7 Coupling Loss for Narrow-Beam Antennas at Both Sites

In the previous section a widebeam transmitter was assumed.
On most practical paths the coupling loss is associated with
narrowing of both transmitting and receiving beams. In this
section the case of extremely narrow beams of comparable size

are considered.

2.7.1 Coupling lLoss for Ideal Narrow Beams

The loss is dependent on the relative horizontal beamwidths
of the two beams. Let the beamwidths of two rectangular beams
be

) = vertical beamwidth at transmitter,
8 = horizontal beamwidth at transmitter,
BR V~= vertical beamwidth at receiver,

’

BR " = horizontal beamwidth at receiver.
’

Assume that the receiving beam is the narrowest horizontally,

<
Br, 1 For < Pr,u Ror
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If this is not the case, the subscripts T and R should be inter-

changed in the remaining expressions in this section.

Since the integration (see Fig. 2.4) is now over a very

small volume, it is simple to write down the path loss Lp. Using
Eq. ( 2.22) we get
10-Lp/10 1 -m  RFrPra * Rrfr,v " Byfpv
"¢ 37 fmin =
R_."R min Smin
R T
c -m -1
d RR,V BR,H E‘T.V emin %Ro
Combining this with Egq. ( 2.23a) yields the coupling loss
2 1 m-1
0 . . B{%, —5—
L =10 log |oBiE_——EE— . (S:l) (ri-Z) (2-36)
R,V RH T,V.
where
<]
= — +
®nin R, * 8pg ¥ frg
and
-
“Ro ~ 2R_ * %e -

Loosely speaking, the coupling loss depends on (e/_e)3 for two
equal narrow beams, and on (e/a)2 for only one narrow beam
(Eq. 2.30). Viewed as a function of frequency, the coupling
loss has a slope of 9 dB/octave for two narrow “eams and 6 dB/

octave for one narrow beam,

Following the general principles of the preceding section,
the coupling loss can also be expressed in the form
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1l
Apap,v. 2 B(z' 2 )

L = 10 log x3 emin %o 1) (m-2) (2.37a)
< 37
ar,m 7 2r,m < Ror 7/ Rop (2.37p)
|

where

AT = Area of transmitting aperture

ac v = Vertical dimension of receiving aperture

’
aT.HaR.H = Horizontal dimensions of transmitting and

receiving apertures, respectively.

When inegquality in Egq. ( 2.37b) is reversed, the role of the

transmitter and receiver should also be reversed in Eq. ( 2.37a).

2.7.2 Coupling Loss With Intermediate Values of Vertical Beam-
widths.

So far we have only considered the asymptotic case of very
narrow beams. Here this assumption is relaxed in the vertical
direction, while the horizontal beamwidth will be assumed either
very large or very small. The ideal beamshape will be used,

i.e., the beam pattern is

(1 el < a/2
G(g) =
0 |e] > p/2

where g8 is the'beamwidth.

If the beam is wide horizontally, then the path loss is
(from Section 2.4.1)

1 m-1 Spot P rv Opot Py
~pr10 _ BGr 750 ' -
10 3 [ Qg [ dup  logtoy)

%ro %ro
2=-62
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c”ﬁi’ Ezi'l") 2-m F(srv Prv )
A . !

= Im-1) (m=2) ‘min “\&_,

n ’
‘min min

where

2-m 2-m 2-m
F(x,, x,) = (1 - (14x,) - {1+x,) + (14%,4x,) )

The coupling loss is simply

Le ® =10 log F(m'.l'v/em:i.n' eRV/amin) ( 2.38)

For wide vertical beams this reduces to Eg. ( 2.23a), while for

narrow vertical beams we can use

F(xl. xz) = (m=1) (m-2) xl x2

If we instead assume that one of the beams, the receiving one say,

is narrow horizontally, then we have

+ +
ORo' PRV ot Py

e A
%rRo %ro
OLl-w*;"lzv i
Ca__ 1-m 1l-m
= a(::n [ aog %.; t("nﬂ"ro) - (og* oot Ry

%Ro




CFRH el-m " (GTO \ _ (9 +8 >l—m a ( Opo \
Y ; _ 3 - +
P (m—1)2 min m-1l emin‘ min 'RV m-1 emin BRV/

\l-m °T0+R'1‘V
- (emin+8'1'V) 8m--l (e +8
min TV
o +@

l-m

To "TV )

A 10 1V
- + +
m-1 (emin R 8

+ (e . +8__+R )
min TV RV v Brv

The function em_l(x) was defined in Section 2.4, and is a special

case of the hypergeometric function,
ev(X) = F(v, 1; v+ 1; x).

The above expression for the path loss may be easier to interpret

if written as an infinite sum,

® Cg
-Lp/10 _ RH k 1l-k-m k l1-k-m
1071/ kEO d@-1) m-1+%) | °7o ®min  ~ %ro \%min’ an>
\k 1-k-m X \1-k-m
- (°‘ro+ Brv ) ( ®min’ B'1‘V> * (°'ro+ B'1'V> ( ®mint frv Bry)

The coupling loss is then

m—2) [ ] k
L = 10 tog — ™2 = 3 (o N
€ o, B(E, B} xeo ™1YE \Opy
min (2' 2
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x (1 - (1+va>l-m-k _ (1+XTV‘ Eﬂig) (1+XTV)1~m-k
min l-m-k
* (g _G_T-:) (1+x'rv+xnv) ( 2.39)

where

xTV BTV/Bmin

X = 8

RV /8

RV’ "min °

This is shown in Fig. 2.7 for a particular link, together with
the asymptote, Eg. ( 2.36) and the curve for a wide horizontal
beam, Bg. ( 2.38). Combining the curves for Egs. ( 2.38) and

( 2.39) yields an excellent approximation to the coupling loss
when this is less than 5-7 dB. When the coupling loss is higher

Egq. ( 2.39) is sufficiently accurate by itself.

Although Eq. ( 2.39) is not difficult to evaluate numerically
it may be worthwhile to note that the following approximation may
be used at values of the coupling loss larger than approximately
10 4B,

B

RH
Lo ~ =10 1og B(; me1 F(x'l'v' xRV) ’
Cro \2’ 2

where F(- , -), xTV
tions indicate that the error is less than 1 dB.

and XRV were defined above. Numerical calcula-
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The derivation of Eq. (2.39) assumes that one beam is
narrow horizontally in comparison to the other beam. It has
been verified numerically for symmetric links where the two
beams are equals. In the important case of nonsymmetric links
with equal horizontal beamwidths (assumed narrow as in Eq. (2.33))

the following approximation and lower bound is easily found:*

8

2(m-2) H
L, =>-10 log F ’
c EESIENILL (Rryr %ew)
2 (hp- hy)
1 T
+ 10 log (1 + n 2 +8 - eTGl_) (2.40)

min

where
)l—m

F_, (x&,x&) =1 -(1 + xT)l'm - (1 + xR)l'm+<1+xf+xk

and

hR - h,r = difference in elevation of receiver and
transmitter

8 - 08 = difference in elevation angles of receiving

RG and transmitting antennas.

This formula reduces to Eq. (2.36) in the asymptotic case of

very narrow beams.
2.8 Conclusions

The preceding analysis leads us to the following conclusions:
o The concept of coupling loss should not be used as a

universal answer to the question of antenna gain loss

m=-1

2 )=1.68 for m = 11/3

™~

* The Beta function B(l.
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on a troposcatter channel. The total path loss is a
more fundamental parameter since it only depends on

the atmosphere ingside the common volume.

Coupling loss should only be used in connection with

a specific model of the atmosphere. Hence, it makes
little sense to compare the coupling loss for different
atmospheric models. 1In particular, the coupling loss
we have calculated for m=1l1l/3 cannot be compared to

that of NBS (m = 5) nor to that of CCIR.

The pathloss can be calculated directly from the atmos-

pheric parameters of

effective earth radius
variance oflrefractive index
outer scale of turbulence.

This provides a direct physical background for finding
the long term distribution of the received power level,
and opens the way for more accurate prediction of the

performance of specific links.

The turbulent scatter theory is accurate at higher
frequencies (> 1 GHz) while layer reflection can be
dominant at lower frequencies. The simultaneous
existence of the two scatter modes can complicate
accurate link prediction at all times, but turbulent
scatter represents worst case and should therefofe

always be used for link design.
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° For best results, the pathloss should be calculated
by numerical integration over the common volume, using

the actual antenna patterns.

) Highly accurate formulas have been derived for the
pathloss for the turbulent scatter model. The pathloss
is expressed in terms of the basic pathloss (Eq. 2.23a)
with omnidirectional antennas, and the coupling loss
(Egs.2.38,2.39,2.40). The accuracy of the coupling loss
will be verified below, along with a summary of the

relevant formulas.

- The computer program and the formulas derived yield
results for the pathloss which are very close to those
predicted by the NBS method when a spectrum slope

m=5 is used.
The relevant formulas and parameters needed are listed below:

The Scatter Model:

von Karman Spectrum with the spectrum slope parameter m,
3 <m.
The resulting scattering cross-section is described in Section
2.2.4.

The Basic Pathloss Lbvp (Omnidirectional antennas):

" (m-3) 2 _3-m_2-m1l /4 2-m
by =~ 10109, Tmlm2) s o * 3 R, " Pre " ) ]
where

m = gpectrum slope (11/3 for turbulent scatter)

- 2 . variance of the refractive index. The median value
for optical wavelengths [Fried, 1967)] can be used to
represent dry turbulent air conditions (winter), implying
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= 6.7~10-14exp(-h/3.2 km). h is the height of the
scattering point. This is only to be considered
as a typical example since considerable variation
with climate and location exists (Gossard,1977)

r = correlation distance of the refractive index fluctua-
tions. For turbulence this may be equated to the
Suter scale of turbulence L,. With the results of
Fried (1967) this yields

= Lo = 2(h/lm)%.

-
]

2n/) = 2nf/c

= wavenumber of the link frequency.

s | = path distance.

Re = effective earth radius

brg horizon elevationrelative to horizontal at receiver.
eTG = horizon elevationrelative to horizontal at transmitter.

The Coupling Loss

Several formulas have been derived for the coupling
loss. One represents the coupling loss, LCWH' with a wide hori-

zontal beam, and the others the coupling loss, LCNH' with a narrow
horizontal beam.
The formulas assume that the antenna beams have been approxi-

mated by ideal rectangular beams. The validity of this approximation
was carefully analyzed for the asymptotic case (large coupling loss).

The results (Egqs. 2.38 -2.40) are

' 8 2- 8 2-
Lcwn"-lOlog\‘l-(lq-.an_:;) m_(1+_e_:_:n>m
+ (1 + QRV; Brv )2-mJ

min
2=70

o i o ol ‘ )




where
emin = minimum scatter angle
= angular distance.
BRV = vertical beamwidth at the receiver
=~ ),/DR in radians.
BTV = vertical beamwidth at the transmitter
= x/qrin radians.
For LCNH two results were obtained. If one beam is narrower than
then
L. =-101 m-2 oaRH.s
CNH °gB<_; m-1ly 8. ’
20 2 min
where
B(x,y) is the Beta function,
k 8
: l-n-k
o= 5w (e, [ Crag)T
k=0 min min
A k B8 l-m-k
-(1+—T—V-> (1+—1V-\
%o ®min

_B_’I_'V_ k Bt By | 1K
+ (1 + GTO) (1 +-——§—;;— > ] ’

and where we have, in addition to the parameters defined above,

BRH = horizontal beamwidth at the receiver, assumed
narrower than at the transmitter,
d
T + QTG (terminals at equal height)
e
. 2=71




If the horizontal beamwidth of the two antennas are identi-

cal (BRH=BTH=BH) then the loss LCNH is bounded by, and approxi-

mately equal to for very narrow beams,

2 (m=-2) H
L >~ 10 log
~ mb(%-,mpl) 6

{1-(l+—) (l+ ) +(1+ Pry* RV) m}

+ 10 lo -
g(l * laTo aRoI/emin) (2.402)
where
2(h.- h_)
e - @ = ——EB———EL + (8_ . - 6_)
RO To a RG TG

and hR- hT is the height difference of the antennas.

To test the accuracy of these analytical formulas they have been
compared to the results of a direct integration in Fig. 2.8. The
stipled curve in Fig. 2.8 has been found by combining LCNH
Eg.2.39 and LCWH by the expression

/

7 L /7]

L
5 [ CNE
Lo = 7 log |10 + 10

from

The form of this equation was chosen arbitrarily to get a smooth

transition between the results for a narrow and a wide horizontal
beam. The number 7 was chosen to fit the results of the numerical
integration. Perfect agreement is then found for coupling losses

larger than 5 dB. For smaller coupling losses the numerical

integration routine becomes inaccurate due to the large common
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volume so it appears likely that the expression for LCC is ac-

curate even in this range.

The formula (2.40) for equal size antennas can be adapted
to work over the entire range of beamwidths by using the fol-

lowing expression

B g
- _ TV RV
Lc = 10 log Fmsl(e 9 )
min min
1 e
ms (=, 2=1)

2’ 2 in
+ 10 log(l +-———'2 m=2) __rsn )

+ 10 log(l + IaTo- a_ _|/8

Ro'’ min ) (2.41)

This formula is asymptotically correct and is an excellent ap~-

proximation for intermediate size antennas, as evidenced by

the points calculated in Fig. 2.8.
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SECTION 3

ANGLE DIVERSITY PERFORMANCE

In this section, the troposcatter model for performance pre-

diction is used to design angle diversity systems. A qualitative

approach is followed to provide general guidelines for angle
diversity implementation and three specific examples are used to
provide a quantitative base. The three examples are the C-band
RADC troposcatter test system, an operational DCS L-band tropo-
scatter system, and an operational NATO L-band troposcatter sys-
tem. The parameters of these links are summarized in the follow-
ing table. This section also presents the long term variability
model to be used with the troposcatter model for prediction of
link availability. The question of a long term decorrelation

advantage of angle diversity vs. space diversity is also discussed.

3.1 Angle Diversity Design

The short term (~ seconds) fading characteristics of tropo-
scatter signal reception are mitigated by the provision of redun-
dant, i.e., diversity, channels and an associated combining scheme
to utilize the stronger received signals and elimima te the weaker
ones. One method of realizing additional diversity channels is
to use multiple feedhorns at the focal point of a parabolic re-
flector to realize multiple angle of arrival signals. This method
is normally only employed at the receiver since the production of
multiple transmit beams requires either additional power amplifiers
or a reduction in power with power splitters. Thus, conventional
angle diversity has one transmit beam and two or more angle of ar-

rival receive beams.




Table 3.1

Path Parameters

Ly oo Wy kbt P

RADC S.Tepesi Oslo
__Name Test Link] Yamanlar | Kristiansand
Path Distance(mi.) 168.3 172. 205.
Transmitter Height(ft.) 340. 2893. 823.
Receiver Height (ft.) 460. 3176. 1109.
Transmitter Antenna(ft.) 28. 60. 65.6
Receiver Antenna(ft.) 28. 60. 65.6
Transmitter
Boresight/Horizontal ¥ (©) 1.27 0.320 0.46
Boresight/Horizon ¥ (°) 0.27 0.320 0.3
Receiver
Boresight/Horizontal ¥ (©) 0.77 0.110 0.02
Boresight/Horizon 3 (©) 0.27 0.320 0.3
Squint Angle (©) 0.54 1.30 1.2
Frequency (GHz) 4.5 0.87 0.9
i
3=-2




One of the first questions a system designer may ask concerns
the relative advantages of beams spread either vertically or hor-
izontally. Since the diversity advantage stems from the lack of
correlation between the two received diversity signals, the cor-
relation fall-off as a function of squint angle in the vertical
and horizontal directions is the determining factor in assessing
the performance difference. The power loss fall-off as a function
of squint angle is of the same order for the two directions and
therefore is not significant in the selection process. The cor-
relation fall-off as a function of squint angle can be
related to the correlation distance in the plane of the receive

antenna. The correlation distance r. may be defined in terms of

c
two point antennas, one located on the great circle path and one

at a distance . where the received processes on the two point
antennas have a normalized correlation coefficient of 1/e. Clearly
if the correlation distance is much greater than the troposcatter
system parabolic reflector then the correlation between squinted
beams will be very high whereas if the correlation distance is
small compared to the parabolic reflector the squinted beam cor-
relation will be small. The correlation distance is defined in

terms of a vector u in the plane of the parabolic reflector as

®(u) = E(x) E*(_J; + u)

where E(r) is the received electric field at a distance r from the

center of the scattering volume. The results of 2.4.1 and 2.5.1 ;
establish that the above spatial correlation function is related |

to the scattering volume "size" through a three dimensional Fourier

integral ger'
jk ==

r 3

d'r'

®(u) =C ‘(“f‘d[‘ vz') e
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The integration is over the scattering volume defined by
V(r') which is determined by the antenna gain patterns and the
refractive index spectrum fall-off as a function of scattering
angle. The constant k is equal to Zﬂfo/c where fo the carrier
frequency and c is the speed of light. Now Fourier variables in
one domain are inversely related to Fourier variables in the
other domain, e.g., a short time pulse corresponds to a wide
frequency band. Thus the correlation distance in a par-
ticular direction at the receiver is inversely related
to the common volume size in that same direction. 1In Fig.
3.1 we examine the common volume dimensions in the vertical (side
view) and horizontal (top view) directions. For angle diversity
systems, the transmit beamwidth Q is typically smaller than the
minimum scattering angle eo in order to minimize the loss associat-
ed with the squinted beam. The common volume "size" in the hori-
zontal direction is then limited by the transmit beamwidth and is
on the order of V£ = Qr. In the vertical direction, the common

volume "size" is not limited by the beamwidth as much as the re-

fractive index spectrum fall-off which has a dependence of 6-11/3
where 9 is the scattering angle. Since & > 90> {1 the vertical
common volume size Yvr is larger than the horizontal common volume
size YHr. The area of useful scattering energy returned to the
receiver is figuratively shown in Fig. 3.1 as a shaded area. Since
" > YH it follows that the vertical correlation distance will be
less than the horizontal correlation distance for narrow beamwidth
antennas. Thus the vertical angle diversity system will result in
a lower correlation between squinted beams than a horizontal angle

diversity system.

It turns out that as the transmit beamwidth is increased

such that O >> eo, the situation reverses and YV becomes smaller
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than Yu with the result of a smaller horizontal correlation dis-
tance than vertical. This result is consistent with "fat" trans-

F mitter beam measurements and analysis (3.1] of correlation dis-

tances in the vertical and horizontal planes. However, in any

practical application, the transmit beams must be narrow in order

to provide the required antenna gain for successful operation.

This qualitative discussion of correlation distances is sup-
ported by a quantitative evaluation of the horizontal and vertical

correlation distances in Section 2.5.4.

Because the vertical correlation distance is smaller than the
horizontal correlation dist»m~z for practical systems, the angle
diversity design should utilize a vertical squinted beam as the
first additional angle of arrival signal. Since a dual feedhorn

vertical angle diversity (VAD) system increases the conventional

quadruple diversity system to an eight order system, the use of
more angle of arrival signals is not advantageous both because of
system complexity and the diminishing return from additional
diversity. Thus we fix the system design as a dual feedhorn VAD
system and turn our attention to the choice of vertical squint

angle and antenna boresight/horizon angle.

The angle between the centerlines of the antenna patterns of
the two feedhorns in a dual VAD system is defined as the squint
angle. Wwhen the squint angle is appreciably more than a beamwidth,
the correlation between the received angle diversity signals is #

small but the relative signal loss of the elevated beam may be

excessive due to the increased scattering angle. Decreasing the
squint angle reduces this loss but increases the correlation be-

tween diversity signals. The diversity combining loss due to
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signal correlation alone can be expressed for flat fading channels

at large signal~-to-noise ratios as
2
L = =5 LOG(1-p") (3.3)

where p is the normalized correlation coefficient between two com-
plex Gaussian processes. This function is plotted in Fig. 3.2.

The optimum squint angle for the three example systems has been
computed by using this relation in conjunction with the calcula-
tion of the correlation coefficient and squint loss as a function
of squint angle. This calculation used the turbulent scatter model
and common volume integration technique described in Section 2.

The results are shown in Figs. 3.3 - 3.5.

In computing the diversity combining loss DCL, the squint
loss SL results in an effective loss of SL/2 because performance
at large signal-to-noise ratio SNR is determined by the geometric
mean of the diversity branch SNR values or equivalently by the
mean of the SNR values in dB.

In these examples and all others computed, the optimum squint
angle was determined to be approximately 1 beamwidth. Also note
that the optimum is relatively broad such that the dB loss is small
if the squint angle should be larger than one beamwidth. Since
feedhorn design is more difficult with smaller squint angle re-
quirement, this result has important practical implications. The
feedhorn design for the RADC test link resulted in the measured
squint angles given in Table 3,2, Vertical polarization is used
for signal reception in the RADC tests. The additional loss for
this link resulting from a squint angle larger than 1 beamwidth
can be determined from Fig. 3.3 to vary between 0.1 and 0.4 dB.
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Table 3.2
Test Link Parameters

Right Antenna Left Antenna
H Pol. ! V Pol. ' H-Pol. . Vv Pol.
Squint ;
Angle 0.65° | 0.73° 0.55° 0.68°
Half-Power ° ° °
Beamwidth 0.55 0.53 0.50° 0.50

The next question to be addressed is the choice of antenna
pointing angle, i.e., the angle between the main beam antenna
pattern centerline (boresight) and the horizon. As this angle
is decreased, the relative loss of the elevated beam is reduced
but more of the main beam pattern is blocked by the ground such ) §
that an optimum pointing angle exists. Since operational angle
diversity sgrstem are utilized in both directions, the boresight/ | 1
horizon angles at transmitter and receiver are constrained to be |
equal in the optimization search. Using the optimum squint angle
of one beamwidth, the main beam loss for a conventional system
was determined as a function of antenna pointing angle and in
addition the diversity combining loss due to squint loss and
correlation was computed from the model of Section 2. The sum

of these losses establishes the optimum pointing angles for the

three example systems. The results are shown in Figs. 3.6 - 3.8.
In these and other examples the optimum boresight/horizon angle ‘
for the transmit and receiver antennas was found to fall between 1
1/4 and 1/2 beamwidth elevation above the local horizon. This result was
only slightly influenced by the frequency of operation since lower

A frequency systems use larger antennas. It is also worth noting
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that the optimum pointing angle for conventional systems would
be about 1/2 beamwidth (main beam loss curves) but that little
loss is incurred if the antennas are not realigned for an angle

diversity application.

A final consideration in choice of antenna pointing angle
is the effect of increased multipath in both beams due to larger
pointing angles. Because digital modems can utilize the multi-
path to increase the effective diversity order if the multipath
spread is not too large, it is advantageous to choose a somewhat
larger pointing angle if the nominal multipath spread is small
compared to the data symbol interval. However, for L-band systems
the multipath spread, particularly in the elevated beam, may
exceed the multipath capabilities of the digital modem. In this
situation degraded performance due to intersymbol interference

results.

The results from the numerical integration of the common
volume using a turbulent scattering hypothesis are shown in
Figs. 3.9 - 3.11 for the example systems. The 2¢ multipath
spread of the product beam refers to the cross channel multipath
profile defined in [3.2]. The C-band test link has small multi-
path spread* for data rates of interest and because of the small
dB loss associated with larger pointing angles, the optimum point- i
ing angle for a digital VAD system is probably very close to the !
optimum pointing angle for a conventional 2S/2F analog troposcat-
ter system, i.e., approximately 1/2 beamwidth. For the L-band

* Measured results from C-band systems tend to be larger [3.3]
due to the inclusion of the terminal equipment filter character-
istics and measurement noise.
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systems there is considerably more multipath and a steeper slope
with pointing angle. Optimum performance of a digital VAD sys-
tem at these frequencies may result from pointing angles some-
what less than 1/4 beamwidth.

In summary the optimum VAD ststem utilizes a squint angle
of approximately 1 beamwidth with a boresight/horizon angle ap-
proximately equal to 1/2 beamwidth for C-band digital systems
and somewhat less than 1/4 beamwidth for I-band systems. 1In
all cases, however, the optimum configuration results in less
received signal power in the elevated beam. The use of pointing
angles with equal beampowers,which has been suggested [3.4],is
suboptimum because too much power is blocked in the main beam

by the foreground.

3.2 long Term Variability
Tropospheric scatter systems are subject to two fading

phenomena — short term multipath fading and long term power
fading. The short term fading of the instantanecus received
power within periods of time ranging from less than a second tomany
minutes results from random fluctuations in the relative phasing
between component waves arriving at the receiver over slightly
different propagation paths. The long term power fading results
from slow changes in average atmospheric refraction, in the
intensity of refractive index turbulence, and in the degree

of atmopsheric stratification. The power fading is characterized
by hourly or diurnal variations. The evaluation of troposcatter
system performance is accomplished in part by determining the
hourly median path loss where the median is computed to include
the short term multipath fading and in turn considering the
median path loss as a random variable subject to a power fading

3=-20




distribution. The median path loss calculation utilizes fixed
values of the mean and variance of the refractive index and an
assumption on the degree of atmospheric stratification. 1In
Section 2 we have presented a prediction method for the computa-
tion of median path loss. This method has the following impor-
tant characteristics:

® The average atmospheric refraction is fixed by

utilizing an effective earth's radius of 4/3 the

actual radius to account for the mean refractive
index.

® The intensity of refractive index turbulance is
fixed by the refractive index variance which is
chosen to correspond to dry winter afternoons.
This period of time generally experiences the
poorest propagation conditions.

o The atmospheric structure is derived from turbulent
scattering theory which leads to a refractive index
spectrum slope of n=11/3." This structure is more
applicable for higher frequency (> 1 GHz) tropo-
scatter systems than the stratified layer assumption
used in the NBS prediction method.

® The aperture-to-medium coupiing loss is included

as an integral part of the path loss calculations.

For this method the power fading of the median path loss
is determined by variations in the effective earth radius fac-
tor K, variations in the refractive index variance onz, and
changes in the atmospheric structure leading to other values of
the refractive index spectrum slope n. Given probability
density functions on the parameters K, oi. and n, the computa-
tion of the median path loss long term distribution would be

* This time period is referred to as Time Block 2 (TB2) in the
NBS prediction method.




straightforward. Unfortunately there is little empirical data
available to derive such densities. Some experimental evidence
and analysis [3.5] indicate that the refractive index variance
cnz is the dominating factor in producing significant variations
in the median path loss. Development of experimental data on

°n2 over long periods of time for different geographical areas

would provide a basis for predicting long term variability of
troposcatter systems. At the present time the only method of
predicting this variability is to use path loss data taken from
existing systems and integrated into the NBS variability model
[3.6]. Much of the empirical path loss data has been taken from 1
systems with operating carrier frequencies below 1 GHz, The
performance prediction for new troposcatter systems operating
in the 4 to 5 GHz frequency region may be subject to large
errors as a result. However, in the absence of empirical data
on either anz or median path loss at these new frequencies, an
-extrapolation of the NBS variability model is the only realistic
engineering choice. 1In the next subsection we briefly review
this model and describe the specific parameters integrated into

the SIGNATRON prediction computer program for computation of

long term variability. In the subseguent subsection the spe-
cial issues which must be addressed in the evaluation of the
long term variability of an angle diversity system are con-
sidered.

3.2.1 NBS lLong Term Variability Model 3

Considerable experimental evidence suggests that the long
term distribution of the hourly median path loss is normally
distributed in dB. If we denote L(p) as the hourly median
path loss in dB, which is not exceeded p% of the time, the
normal distribution is defined as follows:
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356 = prob { median path loss < L(p)}

L (p)

— | e [(g-L(SO))z / 2°L2 ] ae . (3.1)
aﬁ Zw

where L(50) is the median path loss computed using the method

of Section 2 and oy, is the long term standard deviation. The
NBS Long Term Variability Model (3.6] uses empirical data to
determine L(10) and L(90) from which normal probability graph
paper can be used to plot L(p) at other values of p. This
calculation includes the effect of prediction uncertainty through
a parameter called service probability. The service probability

is the probability that a new system will meet the long term
performance predictions.

A parameter called effective distance, de' has been found
to be superior to other parameters such as path length,angular
distance,and distance between actual or theoretical horizons,
in predicting ﬁhe long term variability. The effective dis-
tance is defined in terms of dg, which is the distance for
equal diffraction and scatter path loss and dso which is the
smooth earth distance between radio horizons. These parameters

are computed from the following relations

a = 65(100/£) 3 xm (3.2)
1

d'o =qd -3 ~/§°ﬁ:; -3 & 2 hr (3.3)

where the effective antenna heights hte and hr are expressed
in meters, the path length dis in kilometers.ana the radio
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frequency £ is in MHz. The effective distance is defined in
the NBS model as
"130/ (l+(@. -4 ) /dl xm, 4 < 4
%1 %o %o %1

130 + ds - d kn, d >d
o s1 o 1

A variability function Y(p) which depends on the effective
distance and can be corrected for frequency and climate effects

is used to determine L(10) and L(90 from the relation
L(p) = L(50) - Y (p) (3.5)
The variability function is defined by

Y(P) = YO(P: de) g(P. £)

where g(p, f) represents an average of many effects that are
frequency sensitive. The NBS variability model provides empiri-
cal curves and an analytic function representation for Yo(p,de).
In addition,the model uses a parameter V(50,de)'u:adjust the
long term reference median path loss computed by the NBS method
to the median loss L(50) in (3.5). For dry winter afternoons
this adjustment is 0 dB.

The analytic function representation for Yo(p.de) is given

for dry winter afternoons (Time Block 2) as

Y°(10. de) n

= rc d 1

Ll e fz(de)] exp(-c3d.n3> + £0d)

(3.6)
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where .
n
2

£,d.) = £, [1 - (-£ /£ ) exp(-c, d ) ] (3.7)

and the constants have values (de in kilometers)

e 1.04 x 10™° 1.05 x 10°°

1 -8 -13
c, 4.28 x 10 7.00 x 10
c, 3.51 x 10°° 7.64 x 10~°
n 2.71 2.59
n, 2.91 4.80
n, 3.41 3.68
£ 9.15 . 7.05

m
£ 2.8 2.8

For frequencies greater than 400 MHz, the curves for

g(p,f), winter afternoons, provided in the NBS model can be

well approximated by

1-0.6 LOG (.0005 £) 400 < £ < 2000
g(l0, £) = g(90, £f) =
1.0 2000 < £.

(3.8)
For a normal distribution, other points on the loss distri-
bution are calculated from

Y(0.,01) = 3,33Y(10) ¥(99.99) = 2.,90Y(90)
Y(0.1) = 2.73Y(10) Y(99.9) = 2.41Y(90)
Y(1.0) = 2.,00Y(10) Y (99) = 1.82Y(90).

These calculations and the loss distribution resulting from
(3.95) provide the long term variability of the median path loss
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for a continental temperate climate during winter afternoons.
The NBS variability model provides numerous curves and other
variability functions to accommodate other portions of the

season and other climatic areas.

The path loss distribution (3.5) corresponds to a service
probability of 50%,i.e., 50% of the systems built would exceed
the performance predictions. Conservative engineering practice
would recommend the selection of a service probability of 95%.
For this choice the loss distribution must be adjusted by the

prediction error according to the NBS formula

Ly o5(P) = L(p) + 1.65 / 12.73 + 0.12v%(p). (3.9)

The variability predictions used in this study utilize the
NBS long term variability model with a service probability of
95%. The median path loss L(50) is computed using the method of
Section 2,which corresponds to the loss for turbulent scattering
conditions during dry winter afternoons iﬁ a temperate continental
climate. The formulas 3.1 through 3.9 are then used to derive
the loss distribution. The mean Eb/N° distribution for evalua-
tion long term variations in digital system performance is de-
termined from the path loss distribution by the formula

5 -
§ (P) = P+ Gt Go= L . (p) - 10LOG (R,) +NF - 174]4-1.6

N T T R
o
(3.10)
where

PT = transmit power in dBm

GT = transmit antenna gain in 4B

Gp = receiver antenna gain in dB
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L 95(p) = path loss not excegding p% of the time for
* unit gain antennas and a service probability

of 0.95
Rb = data rate in b/s
NF = receiver noise figure in 4B
-174dBm = received noise power in 1 Hz bandwidth
1.6 dB = factor relating median to mean for a complex

Gaussian scatter channel.
3.2.2 long Term Variability in an Angle Diversity System

In space and frequency diversity systems, the common scat-
tering volume is virtually the same for each diversity and hence
the long term median path loss varies the same for each diversity.
In angle diversity system, however, the common volumes are sepa-
rated and the long term variability is not identical for the
angle diversity beams. The effect of this decorrelation of the
diversity power fading may improve the system availability be-
cause a power fade in the main beam diversity is not always ac-
companied by a power fade in the squnited diversity beam.Phys-
ically one can imagine this situation in a vertical angle
diversity system where the inhomogeneous structure of the at-
mosphere results in say a larger refractive index variance or
superior atmospheric stratification at heights corresponding
to the elevated beam than at heights defined by the main-beam
common volume. Since the common volumes in a vertical angle
diversity system are separated by approximately one beamwidth
1 at a distance 4/2 from the link terminals,this decorrelation
results from atmospheric variations over distances on the order
of Qd/2. For typical troposcatter applications this distance

is on the order of one or more miles at a height above the

* Aperture to medium coupling loss of the actual diameter
antennas is included in this parameter.
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earth's surface also on the order of a few miles. Experimental
evidence verifying the long term power fading decorrelation in
angle diversity systems has been reported on by Monsen [3.7] and
Troitskiy [3.8]. Data from these angle diversity experiments will
be used to establish the availability improvement from power fad-
ing decorrelation.

The long term median path loss can be described by a multi-
variated normal distribution when each path loss is given in dB.
We ccnsider a dual vertical angle diversity system with or with-
out additional frequency or space diversity. Let x; represent
the median path loss in dB for diversity i and number of diversi-
ties such that the main beamdiversities are odd and the elevated

beam diversities are even,e.g.,for a 2S/2F/2A system we have

Xy, %g mainbeam space diversity channels

x5, x, mainbeam frequency diversity channels

xz, X, elevated beam space diversity channels

Xgo Xg elevated beam frequency diversity channels.

Because of the power fading correlation in space and fre-
quency diversity, one has

X = X3 =% =X,

x2=x4=x6=x8

and x. and x, are described by the joint normal density function

1l 2
1 -X'Rx / 202
f(xl. xz) - X e = "= (3.11)
2mo |R|
where
[ x, - m
x= 1l 1l
sz - m2
1 ap
R= .
Lap az
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B

my = mean value of median path loss
for diversity 1
m, = mean value of median path loss
: for diversity 2
o} = mainbeam path loss standard
deviation
1 . ao = elevated beam path loss standard
deviation
p = power fading correlation coefficient.

The NBS variability model discussed in the last subsection
prov.des a method for determining the path loss standard devia-
tion ¢g. Since p=o and a=l for space and frequency diversity
systems, determination of ¢ completely specifies the long term
variability for these systems. In angle diversity systems the
parameters p and a will also influence the long term variability

of the effective received signal power,

In order to assess the effect of decorrelated power fading

and an increase in the elevated beam standard deviation, we use
the mean diversity path loss in dB as a system measure of per-

formance. This measure corresponds to the’ geometric mean of

the diversity signal-to-noise ratios which asymptotically for
large signal-to-noise ratio governs the short term performance
of both analog and digital systems. Thus we define the mean ]
diversity path loss

Y
x =2 (X, +x) (3.12)

and a system availability function as x(p), where x(p) is the

—

mean ‘diversity path loss not exceeded p% of the time, viz.,
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[ NS

3.%6 = prob {mean diversity path loss < x(p)} .

Since the sum of two normal random variables is also normal,

we have
x(p)
P . 1 -2 2
100 - — J‘ exp{(g -x)" / 2 :] de (3.13)
ox / 2" -

where the long term mean and variance are equal to

'§=% (x, + x,)
2 _ W N § _ - 2
o = x=-0"=3[6x; -m) + (x, - m) ]

=94—(1+2pa+a).

The percent availability for the angle diversity eystem is

x(p) - (m1+m2) /2

p= 1l00{1-Q ( —m——————"— (3.14)
Lo J1+20a+a 2
where Q(.) is the normal distribution function
[- -]
2/2
Qu) = —% Ie Vo av . . (3.15)

v 2n
u

Equation (3.14) for angle diversity should be contrasted
with the result for space or frequency diversity when 0 =0, a=l,

viz.,
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) . (3.16)

p-looLl-o( ~

Note that my for the angle diversity system is not neces-

sarily equal to m., for the space or frequency diversity systems.

As an example, wh:n angle diversity is used in place of frequency
diversity, the additional power amplifier required for frequency
diversity results in a 3 dB improvement for angle diversity, i.e.,
m = ﬁl + 3.

In (3.14) one can see that the effect of the power fading
correlation coefficient is to improve system availability with
decreasing values of the coefficient but, on the other hand, an
increase (a > 1) in the elevated beam path loss standard devia-
tion decreases the system availdability. In order to evaluate
the result of these competing effects, we examine some previous

angle diversity experimental data.

Long term variability data was taken on the Bell Laboratories
experimental angle diversity link reported on by Monsen [3.7].

The important characteristics of this link were

L triple vertical angle diversity

° 2.17 GHz operating frequency

. 179 statute mile path

) 28' transmit antenna, 50' steerable receive antenna
° 1 Kw transmit power

° 1.6 beamwidth separation between beams.

Measurements of hourly median signals once or twice a week
over a period from September 1970 through February 1971 provided
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a set of 43 independent hourly median samples. The long term
received power* means, standard deviations, and correlation co-
efficient for the lowest two vertical beams have been computed
and are given in the following table as a function of antenna

pointing angle relative to the horizon.

Now let us compare the availability of a space/frequency
diversity system with space/angle diversity system. We select
an antenna pointing angle of 0.5 beamwidths as both the results
of Section 3.1 and the data in Table 3.3 suggest that performance

will be maximized. For a space/frequency diversity system

2S/2F diversity: m = -86.7 dBm

]
3
|

1 2

a=1 p=o

I
Lo}
—

T
p = lOOLl

For the 2S/2A diversity system, the second power amplifier
used to derive the other frequency in the 2S/2F system can be
tuned to the same frequency with a resulting increase in received

power of 3 dB. Thus for the space/angle diversity system

2S/2A Diversity = m, = -83.7 dBm

m, = -90.0 dBm

N

= 6.1
7.2/6.1 = 1.18
= 0.743

T o q
(]

and from Eq. (3.14)

X + 86.85 \1
1.,0186x6.1. . °

Pp= 100:1 -Q (

»
Received power and path loss are used interchangeably here since
they are related by an additive constant.
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The angle diversity system has slightly decreased availability
because its mean diversity received power is 0.15 dB less and be-
cause the effective standard deviation is increased by a factor of
1.018. Thus in some cases the squint loss and increased standard
deviation of the elevated heam path loss overcome the availability
improvement due to the 3 dB power amplifier gain and the power fad-
ing decorrelation. For this experimental system, however, the
squint loss was considerably larger than would be designed for an

operational system.

When the squint loss is equal to 6 dB there is exact cancel-
lation of the 3 @B power amplifier gain with the mean diversity
loss associated with squinted dual angle diverssty system. For
operational systems the net gain due to these two factors will
normally be positive since the antenna beams can be placed closer
together than the 1.6 beamwidth separation in the BTL experimental
system. The net gain due to the power fading correlation coef-
ficient and elevated beam standard deviation is more difficult to
assess because of the rather limited empirical data. The BTL
data suggests that the two effects tend to cancel each other out.
Troitskiy [3.8] has presented data on three links which show a
smaller power fading correlation coefficient than found from the
BTL data. Table 3.4 summarizes Troitskiy's experimental results.
The power fading correlation coefficient was measured between
envelope powers in watts rather than dBm and is designated‘;.

Ir the Appendix we show that ? is overbounded by p but the bound
is tight and to a good approximation p = p.

It is surprising that the results in Table 3.4 show a smaller
power fading correlation coefficient when these links have the
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beams closer together in the sky than the beams were in the BTL
experimental link, Also it is unfortunate that Troitskiy did
not report on data from which the elevated beam standard devia-
tion can be : - .culated. A major goal of the AAC field test
program will be to obtain estimates of both the power fading

correlation coefficient and the elevated beam standard deviation.

This data will be used to help resolve what, if any, avail-
ability improvement can be attributed to long term decorrelation

of angle diversity beams.

Table 3.4

Experimental Results, Ref. Troitskiy [3.8]

Path Freq. | Beam- Angle Betweeni Scatter } Hours f ~
Length width Beams ; Angle | of . o
Miles GHz mr ‘ mr | mr | Data '
T ! ‘ r
188 1.0 | 12.5 11.6 | 35 | 500 | 0.50
, .
174 4.35 | 12.5 8.7 [ 33 . 240 . 0.56 !
267 i 4.35| 5.8 | 6.9 ' 50 . 100~ | 0.679?
150 | :
: J;, ) i ‘
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SECTION 4

DIGITAL SYSTEM PERFORMANCE

The bit error rate performance of a digital data system
operating over an angle diversity troposcatter link is dependent
on the received power at each feedhorn, the correlation between
diversity channels, and the multipath characteristics of the
composite diversity system. As one of the end products of this
study, we will develop the mathematical formalism to predict (1)
the average bit error rate as a function of the hourly median
received power for the main beam diversity channel and (2) the
long term probability that the averagebit error rate is exceeded.
The formalism will be converted into computer programs for con-
venient calculation of these results for specific angle diversity

proposed applications.

The first goal is concerned with evaluating the short term
(less than a minute) fading characteristics of the troposcatter
channel. The second goal deals with the availability of the
digital troposcatter system as a result of hourly and daily varia-
tions in path parameters. The path loss and multipath prediction
model developed under this program provides the basis for the
calculation of the short term path parameters while the Eesults
from 3.2 and the NBS long term variability data will be used to
assess the availability queétion.

Computation of bit error rate statistics implies a choice
of digital modulation format and receiver processing technique.
We have selected QPSK for the modulation format and a generalized
adaptive decision-feedback equalizer (DFE) for the processor.
QPSK is the present choice of the twodeveloped troposcatter modems,

MD-918 and the DAR-4, because of its bandwidth efficiency, nearly
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constant envelope characteristic, and optimal detection capability.
The DFE has been shown in extensive field testing of the MD-~918
modem to provide excellent performance over an extremely wide
range of channel conditions such as might be anticipated in an
angle diversity application. The MD-918 DFE modem is also the
modem to be used in the AAC field tests.

The general problem of computing the short term bit error
rate (BER) distriubution for a fading multipath channel is a dif-
ficult if not impossible task. One can determine the BER dis-
stribution for a flat fading channel with diversity order D in a
straightforward manner [4.1] but the introduction of implicit

diversity due to multipath precludes a closed form transforma-
tion of variables. The short term mean BER for a space or fre-

quency diversity system can be determined following the procedure
developed in [4.2] with a resulting expression in the form of a
determinant. The BER distribution can be estimated by find;ng
the mean BER and then defining an equivalent, non integer, flat
fading diversity system by matching the mean BER's in the region
of interest. The effective order of diversity D, for the equiv-
alent flat fading system could then be used to derive the short
term BER statistics. The effective diversity order would reflect
the correlation loss between diversity channels, the squint loss
of elevated beams, implicit diversity due to multipath, and the
intersymbol interference penalty which limits the usable implicit
diversity. Thus, the computation of mean bit error rate is a
logical first step in the evaluation of system performance. In
the subsection to follow, the analysis developed in [4.2] is
extended to include correlated explicit diversity channel systems
such as angle diversity.




4.1 Mean Bit Error Rate Derivation

4.1.1 Communication System Definition
The communication system model under consideration is shown

in Fig. 4.1. Complex notation is used to represent in-phase and
quadrature components and explicit modulation/demodulation opera-
tions are not shown. The data to be transmitted (sk) are selected
from the set (+l+j) for a quaternary phase-shift-keying system.
The transmitted waveform is

s(t) = I, s f (t-kT) (4.1)

where T is the interval between successive symbol transmission,
i.,e., symbol interval. The data rate for this QPSK system is
2/T bits/second. The transmitter impulse response f(t) is de-
fined as a unit energy real function.

The fading multipath channel can be represented by an ensemble
of zero-mean random functions with complex Gaussian statistics.
Individual diversity channels in an angle diversity system will
exhibit correlation between each other which can be completely

described by the second moment of the channel impulse response h i (t),

hy(£) h1(r) = 8(k-m) B A; P (6), 1, 3 = 1,2,...D,
_ (4.2)

where 6(t) is the impulse function, Eb is the mean re-
ceived energy per bit for the main beam diversity channel, Aij
represents a relative received power difference between the diversity
channeis, and pij(t) is a unit area function equal to the mean
squared envelope of the impulse response. It represents the aver-
age cross power response at each delay value to impulse function
excitation and will be referred to as the cross multipath profile.
Twice the RMS width of the profile is the cross multipath spread,
2°ij’ For convenience the main beam diversity channel is designated

as channel 1 which requires All- l. In a typical angle diversity
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application utilizing dual vertical feedhorns on each antenna
with odd numbers designating main beam diversities and even
numbers designating elevated beam diversities,the characteriza-

tion has the special form

A= 1 , pii(t) = pi(t): i odd (4.3.1)
S i - +

Aii 1l . pii(t) pz(t), i even (4.3.2)

Bi,i#l =1 ¢ Py 541 T Pyplt)s 1 ocad “4.3.3)

pij(t) =0, i# 3jand i (odd) # j-1 (4.3.4)

Conditions (4.3.1) (4.3.4) state that all main beam diversities
have equal statistics and are independent of each other. Conditions
(4.3.2) and (4.3.4) state that all elevated beams have equal statis-
tics and are independent of each other. Finally, conditions (4.3.3)
and (4.3.4) state that the cross multipath profile is the same for
each feedhorn pair but that the correlation between feedhorn ports
on different antennas is zero. Note that the elevated beam in a

vertical angle diversity system generally has less received power

because of its larger scattering angle. The results from Section
3.1 contend that in a duplex angle diversity system it is not
advantageous to point the antennas down to equalize the received

powers in the two feedhorns.

The definition of Eb as the received energy per bit for the

main beam diversity, = 1, follows from the fact that one re-

A
ceived bit is represented by the pulse

+1 [ £(t-w n () @ o

which has energy

Ldtl Lf(c—u)hl(u)dulz =2y, Ldt I. £ (e-u) Ep, (w) au

= Eb I:pl(u) du = Eb
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The ensemble representation is used here because the analysis

to follow assumes a slowly varying multipath channel which the
equalizer can track. Hence the mean BER performance is determined
by computing the channel ensemble average of the bit error pro-
bability for the Decision-Feedback Equalizer (DFE). An overbar

is used to denote channel ensemble averages. Brackets () will be
used to denote average over noise or source statistics for a par-
ticular channel realization. For the white Gaussian noise chan-

nels the additive noise terms ni(t) are zero mean and have second
moments

<ni(t) nj*(r)> =N 8., §(t-7), i, j=1,2,...D,

J
where N, is the noise spectral density in watts/Hz.

Each forward filter in a realizable DFE consists of a finite
length tapped delay line filter with tap spacing of e seconds.
If there are K2 "late" taps and K1 "early taps", the tapped delay
line filter impulse response is

K
2 *
wolt) = T w. b (t-kT) (4.4)
k=-K,

where the tap gain value is chosen with a complex conjugate for
notational convenience later. The receiver filter has impulse
response f(-t) which matches the transmit pulse waveform. For

this choice, in the absence of multipath,and after time synchroni-
zation, the optimum tap weights for the main beam diversity forward
filter reduce to one tap on and the rest off. The output of the
receiver filter is sampled at the symbol rate 1/T to produce the
sample Xﬁ. The backward filter correction sample is summed with
the sampled receiver filter output Xﬁ to produce the detection
variable z, at the mth symbol epoch. The backward filter weights

previous decision s

i by the complex weight b

i to form the sample

output

4-6
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vy = T b.s (4.5)
m i=] iml1

at the decision time for the s, symbol. The decisicn on s, is

denoted as Em. The decision process takes the form
" %0 T ¥n
s, = sgn (Re(zm)) + jsgn (Im(zm))

where sgn is the signum function.

The parameters of the DFE are the number of forward filter
taps K, the forward filter tap spacing, Ts and the number of back-
ward filter taps, B. The optimum DFE requires K = ® = B and
Ts = 1/W where W is the two-sided bandwidth. A practical choice
of parameters for troposcatter channels was determined from com-
puter simulation of a fading channel equalizer application to be
K=3 =B and Ts = T/2.

4.1.2 DFE Performance Analysis

Previous methods of determining average bit error rate (ABER)
performance of practical equalizer structures have been restricted
to Monte Carlo simulations (4.3, 4.4] using an ensemble of multi-
path channels. An analytic approach for calculating the ABER is
complicated by the presence of an intersymbol interference term in
the signal-to-noise ratio (SNR) expression for a particular chan-
nel realization. Because of this term, an average over the channel
engsemble is a formidable task. On the other hand, omission of the
intersymbol interference term leads to a mean BER which for a fixed
SNR monotonically decreases with increasing multipath spread. For
any practical equalizer for a fixed SNR the mean BER will initial-

ly decrease for increasing multipath spread but then increase as

4-7
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the multipath exceeds the equalizer's capability to mitigate the

intersymbol interference. Elimination of the intersymbol term

prévides a convenient lower bound which both shows the intersymbol

interference penalty and is an accurate performance estimate for

small multipath spreads. However, the lower bound is too loose
for performance calculation when the rms multipath spread is on the
order of the forward filter width. The analytic procedure to be
developed allows accurate calculation of the lower bound for no
intersymbol interference and by an approximation of the intersym-
bol interference effect provides a good performance estimate for
the large multipath case.

For notational simplicity the analysis consideres a nondiversity
channel and extends the final results for higher order diversity sys-

tems including angle diversity. The received signal has the form

r(¢) = I s |h(u) £(t-DT-u) du + n(t) (4.6)
MB=a® -

We define the combined transmitter and receiver response as i

g(t) = [ _ £(t+u) £(u) du

and iﬁs convolution with the channel as

JEa(t) = | _ g(t-u) h(u) du. (4.7)

For a sampling time to' the detection variable z has the form

K
2 L, _ = —
z= T w Ln L s/ gbq(to-mm-kvs)+v(to-k7s)7 ,

k==K m

WD
1

where the K-K1+K2+1 forward filter taps are apportioned between K2

"past" taps and Kj; "future" taps and one center tap . The noise variate ‘
™
v(to) = Jn(to-u) £(u) du o

is zero-mean Gaussian with second moment
4-8
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(e kT v (£tT)) = N_ gkT-LT).

There exists an obvious representation in a K=K +K2+1 dimensional

1l
column vector form, viz.,

®

z=w' ( Eb e s, 4, t x) (4.8)
where the accent mark refers to complex conjugate transpose. The
vector w represents thg forward filter complex tap gains, d, Tep-
resents the sampled continuous filter response for the mth trans-
mitted symbol, and v is a zero-mean Gaussian noise vector process

with positive definite covariance matrix NoGo with element values
Nog(kT-LT).

For QPSK, every other bit decision is made on the real part

of z and there is quadrature symmetry and thus the real noise power

affecting that decision is

N

2 1 2) = L2
6°=(Re(ﬂx) Y = > w'G (4.9)

.4
If one assumes am=0. m # 0, there is no intersymbol inter-
ference and the analysis for the mean BER leads to an SNR expression
for a particular channel realization which is a quadratic form‘of
the type gé G;I g, where q, is a complex Gaussian vector with
statistics determined by the channel and Go is a positive definite
matrix. After a diagonalization procedure the average of the bit
error probability function of the SNR can be computed for bbth
coherent and differentially coherent detection. This calculation
leads to the lower bound expression. When the intersymbol inter-
ference is present an effective signal-to-noise ratio can be de-
fined which leads to a quadratic form but both the vector and the
matrix have random components. A method of averaging over a func-
tion of this quadratic form is not apparent. One course worth

considering is to approximate the intersymbol interference effect
4-9
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in a manner which will modify the G° matrix but keep its determin-~
istic nature. This can be accomplished if the following two ap-
proximations are made..

(1) Assume the interference symbols sy o # 0, are Gaussian
distributed rather than complex binary.

(2) Approximate the matrix contribution to G_ due to inter-
. . o
symbol interference by its mean.

This approach assumes that the intersymbol interference after
equalization in a fading multipath channel can be well approximated
by an equivalent non-fading additive Gaussian noise term. Since
most of the bit errors are a result of fades in the desired sig-
nal, gross approximation in the interference characteristics do
not significantly alter the mean BER.

One can reasonably assume that the backward filter cancels
the interference contribution due to past symbols, i.e.,, symbols

which arrive before the symbol currently being decided on. If we

arbitrarily take the symbol selected for decision as 8 the re-

maining interference is classified as future and is given by

/E; té s, w'q, Twy, . (4.10)

m=1
The sum can be truncated after a few terms as the dot product
will disappear for large i due to the finite duration of the pulse
| function q(t). The first approximation is to take s, 2
; mean complex Gaussian with mean magnitude squared value Y . This

as a zero

quantity should be less than two as approximating a unit magnitude
binary variable by a unit variance Gaussian variable will certain-
ly lead to pessimistic performance results due to the tails of the ’ﬂ
Gaussian distribution. A choice of Y2 = 1/2 was found to provide |
excellent agreement between calculated and measured values.

Equation (4.8) can be rewritten as

—
e (g fRarxey)
4=10




and since the additive noise contribution from v is independent
of the source digit contribution from y;., the effective noise

power for the decision on the real part of z is

= ([Re(w' (v + vl)ﬂz)

P o) 1 ()
5 — [} -— [} L B e——
= W' Gw + > w (vlvl ) w > W' GW (4.12)

.Performing the indicated averaging with respect to the source
digits, one finds from the definition of ¥ in (4.10) the covariance

matrix

M
(v.v.') = E Y2 T - (4.13)
%) =By !

The signal-to-noise ratio (SNR) affecting the decision on the real
part of z is then

~|°"’ '

[ o w' )] (4.14)

which we seek to maximize as a function of the forward filter
weight vector, w. cConsider the generalized dot product defined

on the positive definite matrix G, i.e.,

(@, ¥) = u'Gv. (4.15)

Equation (4.14) can be written as

i‘% (Re (z.G'lgb) 12

o m == (4.16)
N, (w,w)'
and by a generalization of the Schwartz Inegquality we obtain
- _1 2 -
Eb ‘ (w'G gg) ‘ % _1 _1
p 5“o ww) S § @°g.6gq) (4.17)

with equality if and only if
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y‘opt =G 9, (4.18)

Note (4.18) results in a pure real terim in (4.16) to satisfy
the Re (<) requirement.

The maximum SNR is then
' ..1
= —— 4.19
ax T H_% ¢ % (419

As a check on the normalization, if ¢ = 0 and to = 0 we have

from Eq. (4.7)

! q(=kT) = g(~kT) = G x (4.20)
and then — -
B B
nax = &, 9O = (4-21)
o o

as is expected in the absence of multipath.
We will now establish that the mean square error function
(e?) =% (lz - ds\2> (4.22)

which is minimized by the decision-feedback equalizer leads to the
same set of forward filter weights as maximization of the SNR in
(4.16) for the appropriate choice of scale factor 4. After sguar-
ing and averaging,equation (4.22) becomes

() = Bragye - 2 B 8 nlwg o, v o e

= \@ v_:'gc-dlz +N_ W Gw. (4.23)

2

Minimization of (4.23) is equivalent to the LaGrange multiplier

problem
min | w'Gw - 28 w' gJ (4.24)
! (=N
which has solution
-1
w=86G6 g. (4.25)
4-12
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Since Eq.(4.18) and (4.25) are the same except for an unimportant
scale factor, we have established that the maximum signal-~to-noise
ratio for a minimum mean-square error DFE and a particular channel
realization is the quadratic form given by EqQ.(4.19). The matrix

G is defined from (4.12) and (4.13) as

¢ =g, +2 v z 9.9, (4.26)
o) m=]1

where Go is a function of the transmitter impulse response and is
a deterministic matrix. The second term in (26) is a random matrix
with statistics determined by the channel ensemble. Using G in
this form for calculation of the mean BER requires an average over a
function of a quadratic form which has both random vectors and
random matrix. The second approximation used to compute this
average is to replace the random interference term by its mean,

i.e. o

G2G +2 2ot 9,9, (4.27)
o m=1

The matrix G is now a deterministic function of the transmitter and

receiver filter characteristics and the channel statistics. The

vector g,o is a random vector associated with the fading channel

ensemble. The average bit error rate can now be computed by taking

the average over the channel ensemble. The bit error probability

for QPSK for any member of the channel ensemble is from (4.11) and (4.19)
b
P,=Xpr {2>11+%pr (8§ <-1} (4.28)

where £ is a zero-mean Gaussian random variable with standard devi-
ation equal to “}l/zpmax' The bit error probability is

P, = (21'r).;i &p exp (-u2/2) du = % erfc ’pmax (4.29)

max

4~13




The subscript ¢ denotes that the detection process was co-
herent, i.e. the receiver knows the transmitted carrier phase.
Differential detection of phase-shift-keyed signals yields a bit
error probability [4.5] .

-p

max

Pg=X%e (4.30)

The tap gains of an adaptive MMSE equalizer remove the phase

and frequency difference between the transmitter and receiver
carrier clocks to an ambiguity of 180° for binary transmission

and 90° for quaternary transmission. This ambiguity is eliminated
by differentially encoding the transmitted data. The performance
of coherently Jdetected and differentially encoded data signals for
a fixed Pmax is approximately double the error rate given by (4.29).
when practical degradations are included in the analysis the per-
formance is closer to the differential detection expression (4.30).
Thus the ensemble average of P, is of interest as a fading channel
performance bound and the ensemble average of P4 is of interest as

an estima;e of realizable modem performance.

Let y(x) be the probability density function for Pmax and
Y(S) its Laplace transform. We want to calculate the ensemble

averages
;; = Io % erfc Jx y(x)dx (4.31)
Ed - fo % e X y(x)ax = % ¥ (1) (4.32)

The Laplace transform Y(s) is easily obtained after a diagon-
alization of the quadratic form in Eq. (4.19).

B 1 Ep

x-NogéG- 9 = F, &' (4.33)

where g is a zero-mean complex Gaussian vector with a diagonal

covariance matrix T'ij = xiaij' The diagonalization resulted from

:
the transformation ]
4-14
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o = ust 4, (4.34)

and M is the normalized orthogonal matrix for the matrix

X

¢~ .9', G °, i.e. (4.35)
-k i S

G ‘qa' G “M=M (4.36)

M'M = I, (4.37)

Thus the eigenvalues A; are also the eigenvalues of the sym-

: ix % 350 ¢ : ix G-l
metric matrix G2 g g ' G and the unsymmetric matrix G qd .
Since the components of Q& are uncorrelated Gaussian, the probabil-
ity density for P, ., is the convolution of exponential densities

which yields a Laplace transform in product form.

K -
2 B . -1
¥(s) = I (1 *5 Aks) (4.138)
=—Kl
The mean BER for DPSK is
K -
2 -1

Py = HY(L) =% T (1 + Ni Xk) . (4.39)

k=-Kl °

For coherent detection it is necessary to find the coeffi-
| cients Aik in a partial fraction expansion of Y(s), i.e.,
: X _

2 B, a7t
Y(s) = £ 1+ As) .
k--xlhk ( No k/

A recursive method for finding the coefficients and the resulting
error probability for coherent detection is detailed in (4.4] where
the mean BER for the infinite length optimum single pulse receiver
was determined. We will concentrate on the DPSK expression (4.39)

4-15




because the DPSK bit error probability curve for the Gaussian
noise non fading channel closely matches the BER for the MD-~918
modem, i.e., the implementation loss and differential encoding
loss in the CPSK detection system is approximately equal to the
loss incurred in ideal DPSK relative to ideal CPSK. Figure 4.2
illustrates this result. Since in a fading channel application
most of the bit errors will occur during periods of low SNR, the
correspondence between ideal DPSK and the measured DFE modem
should be closest at low SNR.

For a DPSK system or for the use of the DPSK expression to
approximate the Gaussian noise non fading performance of a practi-
cal modem, calculation of the average bit error probability does
not require the determination of the eigenvalues. Note that (4.39)

has the determinant form
Eb G-lC' )—l

By = N(dt|r + >

N, (4.40)

where the covariance matrix C is a function of the transmitter

filter multipath profile, and the sampling time to.

- [- -]
Ce™ Oy (t)) = qlt kT g (v AT ) = iﬁg(to-kTs-u)g(to-LT'-u)p(u)du.

(4.41)
The matrix G as defined in (4.27) has the form
-. (kT = 47 ) + EQ Yz g (t_-mT) (4.42)
Gk& g 8 s N ck& o ¢ *
&) m=)

The matrices (4.47) and (4.48) and the signal-to-noise ratio com-
pletely determine the mean BER. The extension to a diversity con-
figuration with a forward filter associated with each diversity
input and arbitrary correlation between diversity channels involves
a straightforward generalization of the matrices C and G. Let
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Fig. 4.2 Non Fading Performance
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Fc(u) c(12) (D) ) Fo (1) (12) (1)
c(21) c(zz)_.. c2D) G(21)6(22).“G(ZD)
¢ =1]. G =].
C(Dl) c(nz)... c(DD) | LG(Dl)G(DZ)...G(DD)J
where
(ij)

ck& = qi(to-kTs)qg(to-LTs) = I g(to‘-k‘rs-u)g(to-'“‘s_u)pij(u)du

(4.43)
- < L =<
kl k., K2
1 <4i,j3 €D
and -
M
(i) By 2 (ij)
= g(kT ~4T ) + =Y L (t_-mT) (4.44)
) s s No n=1 ck4 o)
The average BER has the same form as 4.40
E -1
- l Eb A-l ~
Py = 2(detlr + R é cl) (4.45)

but the matrix rank has been increased from the number of forward
filter weights K to DK where D is the number of diversity channels.
Fortunately for the usual angle diversity application the matrix
rank can be reduced to 2K. Under the conditions specified in 4.3
for a dual vertical angle diversity system in conjunction with
space and/or frequency diversity, the matrices ¢ and G reduce to

4~18




c(11) ,(12) ~ c(1l) (12)

¢ = & (4.46)
c(12) c(22) G(12) G(22)
|
and the mean BER is ?
—_ : E_ - .~D/2
Pg = = (get| 1 + > 4 &l (4.47)

N
(]

where D/2 is the number of main beam diversity channels.

Equation (4.47) with definitions (4.43) and (4.44) for the
matrices:; ij =1, 2; is the basic equation used in this program
to compute mean BER for angle diversity performance of digital

systems.

4.2 Performance Prediction Results

The method of computing the average bit error probability i
for a troposcatter equalizer has been applied to the three tropo-
scatter system examples. The path parameters for these systems
have been given in Table 3.1 of Section 3. The troposcatter
equalizer chosen for the analysis is the MD-918 modem developed
by Sylvania/SIGNATRON for U.S.Army ECOM under the Megabit Digital
Troposcatter Subsystem [4.3]. The modem uses differentially en-
coded 4 PSK modulation and a four channel adaptive decision-
feedback equalizer [4.4] for reception. There are three taps
per forward filter diversity channel with tap spacing equal to
one-half a 4 PSK symbol interval. The backward filter uses three
taps in its transversal filter realization with tap spacing
equal to the symbol interval.

Before the error probability can be computed, squint loss {
must be calculated and the 2¢ multipath spread must be determined
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for the main beam, elevated beam, and cross beam (or product)
ﬁultipath profiles. These values have been computed in Section
3 and were presented in Figs. 3.2 - 3.4 and 3.8 - 3.10. The
selected values for the error probability computation are given
in Table 4.1

Table 4.1
20 Multipath Spread
Boresight/ Squint | Main | Elev.| Product
System Horizon Angle Loss Beam | Beam Beam

Beamwidth dB nsec nsec nsec
RADC 1/2 1.9 132. 164. 130.
i S.Tepesi/
. Yamanlar 1/4 5.4 155. 273. 200.
: 0slo/
:Kristiansand 1/4 4.3 201. 329, 240.

The data rate chosen for the calculation was 6.3 Mb/s as it
corresponds to typical user requirements for strategic digital
troposcatter. With a 4 PSK modulation format, the bit symbol
interval T is then 317 nanoseconds. The Zco/T values for the
main beam diversity are 0.42, 0.49, and 0.63 for the RADC,
S.Tepesi, and the Oslo path, respectively.

The results of the error probability computation are plot-
ted as a function of the mean diversity Eb/N° for no diversity
reception (1 power amplifier). For an angle diversity applica-
tion,the squint loss and the availability of a redundant power
amplifier must be considered in any system comparison with con-
ventional systems. Since the 2S/2F configuration requires two
power amplifiers,any comparison with angle diversity should be
on the same basis and it also follows that a 2S/2A system would
require a second power amplifier for failure and maintenance
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redundancy reasons. For these practical considerations the 2S/
2A system ufilizes two power amplifiers tuned to the same fre-
quency. Thus, in effect, the transmit power per diversity of a
2S/2A system is 3 dB more than in analogous 2S/2F system. This
factar is not considered in the presentation of error probability
vs. Eb/N° since Eb represents received bit energy. The 3 dB
advantage of the 2S/2A system over the 2S/2F system is included
in a later comparison of average bit error probability vs.time
availability. For a 2S/2A configuration the squint loss, sL in
d8, is included in the mean diversity Eb/No as follows;

Mean Diversity E;7N° = No Diversity EEYNO - SD/2

which accounts for all of the elevated beams having a loss of

sL dB relative to the main beam.

The use of mean diversity Es/No allows an evaluation
of the effects of diversity correlation and implicit diversity
in the comparison between frequency and angle diversity. The

correlation between diversity branches reduces the effectiveness

of angle diversity but for small to moderate multipath condi-
tions, the increased multipath spread of the elevated beams ]
produces more implicit diversity in the angle diversity system.

Thus, the predicted results shown in Figs. 4.3 - 4.5 show

slightly better performance for the 2S/2A system when ZGO/T for

the mainbeam diversity is greater than 0.49 (Figs.4.4,4.5) but

slightly better performance for the 2S/2F system when the cor- ]

relation effect is dominant at smaller multipath spreads (Fig.
4.3). Por larger multipath spread/symbol length ratios, it can
be expected that the 2S/2F system will again outperform the
2S/2A system because the multipath spread in the elevated beam

4-21




R i e =T

€919 9¢

? vYIAmNYN ‘0D NIV § iR
SNOTISIAIR 09 X STTIAD ¢ JINHLIMVOO-INDS

IN

T : — 8
N | I
5 - “a
£ I =il y =
-mvm . ll l'llz
mu -
Lll R I.ﬁ
: b
=
2
A —
7S -
S A1 —]
, 7 =0
] .
- —a o o
' \ - 8 8 o=
m % ? 4 'S '? 'e T
AL NONQOYS NIXNYT LG IFIWIIFNY

T — e

MEAN DIVERSITY, Eb/N° dB

FPig. 4.3 Digital Syitcm Performance, RADC Test Link

4-22




AL119HT0IA  YoY¥3 Lig Y3

14

SNOISIAIQ 09 X SITIAD L DI

¢ viamMYR OD P T3 ¥ VRLININ
YO0V-tNIS

A

T M ll.ﬂru.mn 11 B 1._. - T - - \4 r =~ 1- -
I ninns i T o T ™
! i ‘ ; ! i . - : I
i~ BRI I 11 SR ,
N i 4l
| ;
~ @ . !
” D Q . m
o R ! J.
") A
3 i
o
_(.wll_ y | b L,. c— - O “‘
N MU L g ' &
N .
N [, 3 i~ | - 1- 8 v
— N2 {422 —— = SRR o -
- 4- '. 3 X‘li.r: L - — - ] — _ - ‘.\4“ 5 ”% “
b Y I -~ = msw
o - 1o Y
0 ud. .
i o i ) : oo
B N E :
I I - &
1 It Qe
B St G 11 B O I T m &
N , A > - "
L : RS w1 RS y f
’ - il °
| !
| \““\\. 1\L\\ _% ) 4..
- It <
w. | s " .
3 AL ) A S I U S b g L 1 110 >
o @~ >
_ P’ ' <3 L I.- ]
. 2 B % B 0o® W %
-




S

A2009Y909d  Yoy¥3 Lig w3

£S5 9

.

VAR MY O HITSI B 1I4INIM
SNOISIAIG 09 X SITIAD L DI

VYOO 1-INIS

-

2N

—ree 7T TN T T R L e [ IR it i RN I O A0 I A A S A
R A ST dier o T
SERRN 11 B A RR I AU R Hi. i I
. ! .ﬂ»w” 4 -A‘i PN £ T 5 O S S A | ! w._ M|h.f||
) ﬁmﬁ“ QU : m . , Hih
..".. - t ~
:J '. — e 4 4 r4
b ” AI Q ;
B
DL L |l I
mJ . o
: \y mm T
(o] —- RW![ i - v e e 344 ——- L {
| n_ _
r —
TRt ] B . g 111 08 805 s
g - — - ES 0 By otk S ‘
Br 4 1 - .w, - Ll\‘\‘x
i - 1= on | i/ ﬁa > 3
H - o - I'E
o oy 1
| R ol
i o
. g A .
Ty P | ! \ - oo '
g |l b* AL L d p,_HL-M i [ R
..W T8 Y8 s ) P
J e - —

<0 25 30

MEAN DIVERSITY ab/n° daB

Digital Syste@4ggfformance, Oslo~ Kristiansand

/S

/0

S

Fig. 4.5




will exceed the design capability of the modem equalizer. This
result is shown in Fig. 4.6 where predicted performance for a
12.6 Mb/s system operating on the 172 mile L-band path is shown. f
It should be pointed out, however, that an expanded, i.e., more
taps, DFE could be used to compensate for this effect with the re-
sult of better angle diversity performance than frequency diver-

sity performance for these multipath ranges.

It should be emphasized again that the performance comparisons
gleaned from Figs.4.3 - 4.6 are based on an equal received bit
energy constraint. This comparison is useful in determining the
relative effects of diversity correlation and implicit diversity.
It can be very misleading if this constraint is used for system
comparisons. A realistic method of comparing system performance
is to compare the average bit error probability as a function of
time availability for each system, i.e., what fraction of the
time for a given system will the average bit error probability
be larger than a certain value. To accomplish this comparison
we first determine the distribution of the median path loss using
the common volume integration model of Section 2 and the NBS
time availability analysis reviewed in Section 3. The common
volume integration model includes the effect of aperture to
medium coupling loss and provides a path loss parameter normal-
ized to unit gain antennas. To convert median path loss into
Eb/N° in 4B, the relationship is

‘i:b/n° = P+ G+ G- L - NF - 10LOG(R,) + 174 + 1.6

where

PT = transmit power in dBm
GT/R = antenna gain of transmitter receiver in 4B ;

4-25
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L = total path loss including coupling loss effects
NF = noise figure

Rb = data rate in b/s

174 = noise power in 1 Hz bandwidth in dBm

1.6 = dB amount that the mean exceeds the median for a
Rayleigh fading channel.

The antenna gain formula for troposcatter reflectors of

diameter D is

G =10 Loc(ﬂznze/xz)

where 0 < ¢ < 1 is the antenna efficiency with typical value on

the order of 0.57.

In the calculation of median path loss the refractive index
variance dependence is based on Fried's [4.5] results at optical
wavelengths. Also a service probability of 0.95 has been selected
as a conservative measure. We have not collected sufficient
empirical data to establish the absolute accuracy of the pre-
diction model. However, the model is very useful for comparisons
of different systems on a particular link. During the next study
phase, effort is planned to determine the absolute accuracy of
the median path loss prediction over a wide range of troposcat-
ter system types. For the RADC test link where empirical data
is available, the winter median path losses for the two space
diversity antenna receivers were measured [4.6] to be 258 and
260 dB. Our predicted value for this link for winter conditions
is 258 dB which is excellent agreement. The path loss test re-
port [4.7) for the link acceptance of the Oslo-Kristiansand link
in the summer of 1962 shows a median path loss of 217 dB. Be-

cause considerably stronger signals are experienced in the
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summer, this result also compares favorably with our winter
prediction of 231 dB for this link. No empirical data were
available on the S.Tepesi-Yamanlar DCS link.

The total path loss (or Eb/No) distributions for the three
example systems are given in Figs. 4.7 - 4.9. The average bit
error probability curves from Figs. 4.3 - 4.5 are used with the
Eb/No distribution to determine the error rate availability.
Note that the ordinates of Figs. 4.7 - 4.9 represent the no
diversity received bit energy with a single power amplifier
whereas the abscigsas of Figs. 4.3 - 4.5 are expressed as the
average over the diversity branches of the received bit energy.
The relationships between these values are given by the follow-

ing- for the different system configurations:

Eb/no(lpA) = AVG E:b/No 2S/2F
E /N_(1PA) = S /2 - 3 + AVG E:b/No 2s/2A
E.b/No(lPA) = S /2 + AVG Eb/no 2S/2F/2A

The 3 dB for 2S/2A accounts for the use of the additional
power amplifier at the same frequency in this configuration.
The quantity SL is the squint loss of the elevated beam relative
to the main beam. Since in many examples the 2S/2F and 2S/2A
performance are approximately equal on an AVE Eb/N basis, the
system gain of 2S/2A over 2S/2F is equal to 3 - § /2 which is
usually positive and yields the systen improvements shown in
Figs. 4.7-4.9. Note that the performance improvement afforded
by 2S/2F/2A over 2S/2A is not all that large because the added
diversity is reduced by the need to utilize the second power
amplifier at the diversity frequency resulting in a 3 dB system

loss.
4-28
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4.3 Frequency Conversion of L-band Systems

Most DCS troposcatter systems have operating carrier fre-

quencies below 1 GHz. 1In certain situations, the availability

of frequencies within the host country might make it attractive
to convert a troposcatter link to an S~-band or C-band carrier
frequency. At these higher frequencies the path loss, aperture
to medium coupling loss, and antenna gains are larger. For the
turbulent scattering model the scatter angle dependence of the

-11/3

scatter power varies as © which results in a path loss de-

pendence (not including coupling loss) with frequency of f5/3.
This dependence should be contrasted with the NBS model which is

based on a layer theory with a path loss dependence of f3. The

turbulent scatter theory is viewed as more accurate for shorter
wavelength systems and for worse time-of-the year, i.e., winter, : %’
predictions. The antenna gain varies as f2 and when both trans- !
mitting are receiving antennas are taken into account the total ' S'
antenna gain improvement is f4. Thus in the absence of coupling |
loss, higher frequencies of operaéion would result in an improve-
ment of f7/3. The coupling loss results from a shrinkage of the ]
usable common volume and thus is a function of the beamwidth

and the scatter power dependence 9-11/3. For very narrow beam-

width, O << Go, where eo is the smallest scattering angle visible

from both terminals, the scatter power dependence is not important
and the coupling loss is solely a function of the bwamwidth.
For this asymptotic small beamwidth case, the coupling loss is
proportional to the common volume shrinkage which varies as 0'3
where (1 is the (assumed equal) transmit and receive antenna
beamwidths. The resulting asymptotic coupling loss varies as

£3 since 1 is inversely proportional to £. Thus, in the limit

4-32




Q << 8 , the link SNR varies as

Asymptotic

0 <<e_ Link SNR o £7/3 v 4 -3 £2/3

However, for L-band systems, the asymptotic limit is not
approached and one might realistically expect the link SNR to
improve with frequency. Moreover, one must consider the dis-
tribut ion of total path loss (total path loss includes coupling
loss effects) at the different frequencies of interest. In many
examples the NBS model for long term variability predicts smaller
variation in path loss for higher frequency systems. This smaller

variation would result in a better system availability at higher

frequency.

A quantitative evaluation of the above results from com-
putation of total path loss for the 2 example L-band systems
after hypothetical conversion to S and C band. The results are
given in Table 4.2. For convenience, f:b/N° at a 6.3 Mb/s rate
is used to define the link SNR. We see that for both examples
conversion to S-band provides considerable improvement which
is even larger at the higher availabilities. Conversion
from S-band to C-band provides about the same performance as

the asymptotic limit is still not achieved.

Although these results are very encouraging for applica-
tions where frequency conversion are being considered, there
are two factors which the cautious engineer should consider.
FPirst, insufficient empirical data has been collected and
analyzed to validate the turbulent scatter model and the result-

-5/3

ing £ dependence of path loss over the frequency range of
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1 Table 4.2

Ey /N, Frequency Dependence
6.3 Mb/s, Service Prob. = 0.95

Avail- 172 Mile,f = 0.87 GHz 205 Mile,f = 0.9 GHz
ability 60' Ant., 10 KW 66' Ant.. 10 KW

fo 3£, S€, £ 3£, S€,

Eb/NO Eb/NO : Eb/NO Eb/NO %/NO %/NO

90% 23.5 27.9 27.3 22.5 24.5 24.1

99% 15.5 21.5 20.9 15.5 19.1 | 18.7

99.9% 9.1 16.6 i 16.0 10.4 15.0 | 14.6

99.99% 4.6 12.4 11.8 6.2 | 1l.5 . 11.1

interest. Second, the NBS long term variability model is based

upon empirical data taken primarily on systems operatihg below
1 GH=z.
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APPENDIX

] POWER FADING CORREIATION COEFFICIENT

The power fading correlation coefficient can be measured
from the received powers at watts or in dBm. In this Appendix
we derive the relationship between these coefficients. It is
shown for a special case that the watt measure of the correla-

tion coefficient is overbounded by the dBm measure and for a

practical example the coefficients are shown to be close in value.

The density function for the hourly median path loss (or

received power) in dB (or dBm) is given by

f(xlxz) = ——!; e a.l) 1
2ng|R| i
where
X) = ™]
X%ls, -m
R = 2
ap a”

m, = mean value of hourly median path loss (dBm) for mainbeam

m, = mean value of hourly median path loss (dBm) for eleva-
ted beam

o = standard deviation of mainbeam path loss
ag = standard deviatioh of elevated beam path loss

p = power fading correlation coefficient. "

S e — e e




The correlation coefficient is defined as

X.X, - X.X
172 172 === // 2
= — — =X %, -~ mm ao
e (xz_—z)g(xz_;—z);,(lZ 12)
1l 1 2 2
(a.2) ,J
The path loss in watts is
xi/zo 0.115 X Gxi
y; = 10 = e = e , & =0,115, i =1, 2
and its correlation coefficient is
_ {
- ¥,¥, = ¥.¥2 = v v
p= =12 1< = \¥,¥, - VY o
2 _ 2 %( 2 < 2)% ( 172 1 2) / 102
\¥Y, - ¥ ) Y2 7Y,
(A.3)

The mean and variance for Yy is found by direct integration

_ v ax-(x-ml)z/ZG2 aml+%azoz
Y, = 1 :ne P

o)/ 2m

® 2.2

—— 2 2 2am_+2a 0O
le - E_ eZGx-(x-ml) /20 _ e 1

ov2n -= ax

) —-—2‘ - ) 2cunl + azoz 20.202 '

% TV N T (e -1)

The results for Y, follow immediately by substituting ac

for O in the above expressions.




i Y,
,  2am, + 2022242
y, =e
222
. . 2-_2=e20m2+o.ac(eu23262 1)
2T ¥ T Y .

To find yly2 . we find it convenient to perform an ortho-
gonal transformation on x to produce an independent joint normal

process. Let Q be the orthogonal matrix which diagonalizes R,

i.e.,
QrRQ' =T , rij = ki 6ij' i, 3 =1, 2
where
e
Q = 1
€2

and & and e, are the eigenvectors of R,

ei .

Re; = 2y

The transformation is
u=0Qx, x=Q'u

and the density function of u is

A=-3




1 't 'T-lt_z/Z o2

(A.5)
2TT°|R‘!5

f(u) =

which shows the independent nature of u, and u,. Now

— X rx) ST ow
Yi¥; = ¢ = -
where

r‘a A

2=
a

—m —-—
n 1

L 2

Since x = Q'u, we have

—  tb'm Db'Q'u

b'm c¢'u b'm cu, c,u
YIY2=e e = e e

where we have used the independence of u1 and u, and where

0
]
"
e)
o’

We have already evaluated terms of the form eax to f£ind

c.,u cihi/Z
e = e .




T L
The power fading correlation coefficient is thus
N +o.(m1+m2) L (clkl+c A\ )/2 !50. o (1+a ) _1
P =
(m+m)/ o2a2 zzz 222
12 o_l>eaaa(eaaa_l)
N e-c(cl>.l+c2>.2)/2_e 150. o? (1+2 )
2 2 2 / 2 2 2
T o)z [ (o ) (et ))
For the special case of equal variances, a=l, (A.6) reduces
to a much simpler form. The eigenvalues and eigenvector for R
. when a=1 are '
)‘1 =0 (1 - p)
)‘2 =0 (1 + p)
1l 1
g =-1"
N2 | -1
e, = L
2 5
with the result
~ eazczp 1
p = 53 @a.7)
ea g -1
A-5
[ I —




One can show that ; £ p by using the inequality
l-x <e X, x30.

Let p = l-¢, ¢ > 0, and (A.7) becOmes

22 _22 2 2 -
P 2.2 _ 1 < 2 2
ec ea’o-l
2 2
22
<1 a°g°c e® 9
- 22
eao 1l

_cxflze(l + a3 + % + )

<1~ 22 4.4 6.6
(s 3+ ...ng_....ﬂf_.,._“

4 4
<1+a202+£~1_+~o-\
T<cl-%£ 2 4 <1l-c¢
P 2 2 4 4 = °
1e &0+ 20+ .

Numerical examples show that to a good approximation
'; % 5 for the above special case and when a $ 1. For o‘xample.
for the BTL data we have '

p = 0.74
g = 601
a=1.18

and the calculated result is p = 0.68.

A=-6

N b 4 bt 0w
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